Results 1 - 10
of
35
Laplacian Surface Editing
, 2004
"... Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We p ..."
Abstract
-
Cited by 235 (27 self)
- Add to MetaCart
Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We provide such a representation of a surface, based on the Laplacian of the mesh, by encoding each vertex relative to its neighborhood. The Laplacian of the mesh is enhanced to be invariant to locally linearized rigid transformations and scaling. Based on this Laplacian representation, we develop useful editing operations: interactive free-form deformation in a region of interest based on the transformation of a handle, transfer and mixing of geometric details between two surfaces, and transplanting of a partial surface mesh onto another surface. The main computation involved in all operations is the solution of a sparse linear system, which can be done at interactive rates. We demonstrate the effectiveness of our approach in several examples, showing that the editing operations change the shape while respecting the structural geometric detail.
Anisotropic Polygonal Remeshing
"... In this paper, we propose a novel polygonal remeshing technique that exploits a key aspect of surfaces: the intrinsic anisotropy of natural or man-made geometry. In particular, we use curvature directions to drive the remeshing process, mimicking the lines that artists themselves would use when cre ..."
Abstract
-
Cited by 203 (16 self)
- Add to MetaCart
In this paper, we propose a novel polygonal remeshing technique that exploits a key aspect of surfaces: the intrinsic anisotropy of natural or man-made geometry. In particular, we use curvature directions to drive the remeshing process, mimicking the lines that artists themselves would use when creating 3D models from scratch. After extracting and smoothing the curvature tensor field of an input genus-0 surface patch, lines of minimum and maximum curvatures are used to determine appropriate edges for the remeshed version in anisotropic regions, while spherical regions are simply pointsampled since there is no natural direction of symmetry locally. As a result our technique generates polygon meshes mainly composed of quads in anisotropic regions, and of triangles in spherical regions. Our approach provides the flexibility to produce meshes ranging from isotropic to anisotropic, from coarse to dense, and from uniform to curvature adapted.
Harmonic functions for quadrilateral remeshing of arbitrary manifolds
- COMPUTER-AIDED GEOMETRIC DESIGN
, 2005
"... In this paper, we propose a new quadrilateral remeshing method for manifolds of arbitrary genus that is at once general, flexible, and efficient. Our technique is based on the use of smooth harmonic scalar fields defined over the mesh. Given such a field, we compute its gradient field and a second v ..."
Abstract
-
Cited by 73 (2 self)
- Add to MetaCart
In this paper, we propose a new quadrilateral remeshing method for manifolds of arbitrary genus that is at once general, flexible, and efficient. Our technique is based on the use of smooth harmonic scalar fields defined over the mesh. Given such a field, we compute its gradient field and a second vector field that is everywhere orthogonal to the gradient. We then trace integral lines through these vector fields to sample the mesh. The two nets of integral lines together are used to form the polygons of the output mesh. Curvature-sensitive spacing of the lines provides for anisotropic meshes that adapt to the local shape. Our scalar field construction allows users to exercise extensive control over the structure of the final mesh. The entire process is performed without computing an explicit parameterization of the surface, and is thus applicable to manifolds of any genus without the need for cutting the surface into patches.
Explicit Surface Remeshing
, 2003
"... We present a new remeshing scheme based on the idea of improving mesh quality by a series of local modifications of the mesh geometry and connectivity. Our contribution to the family of local modification techniques is an areabased smoothing technique. Area-based smoothing allows the control of bo ..."
Abstract
-
Cited by 66 (6 self)
- Add to MetaCart
We present a new remeshing scheme based on the idea of improving mesh quality by a series of local modifications of the mesh geometry and connectivity. Our contribution to the family of local modification techniques is an areabased smoothing technique. Area-based smoothing allows the control of both triangle quality and vertex sampling over the mesh, as a function of some criteria, e.g. the mesh curvature. To perform local modifications of arbitrary genus meshes we use dynamic patch-wise parameterization. The parameterization is constructed and updated on-the-fly as the algorithm progresses with local updates. As a post-processing stage, we introduce a new algorithm to improve the regularity of the mesh connectivity. The algorithm is able to create an unstructured mesh with a very small number of irregular vertices. Our remeshing scheme is robust, runs at interactive speeds and can be applied to arbitrary complex meshes.
Isotropic remeshing of surfaces: A local parameterization approach
- In Proceedings of 12th International Meshing Roundtable
, 2003
"... We present a method for isotropic remeshing of arbitrary genus surfaces. The method is based on a mesh adaptation process, namely, a sequence of local modifications performed on a copy of the original mesh, while referring to the original mesh geometry. The algorithm has three stages. In the first s ..."
Abstract
-
Cited by 45 (4 self)
- Add to MetaCart
(Show Context)
We present a method for isotropic remeshing of arbitrary genus surfaces. The method is based on a mesh adaptation process, namely, a sequence of local modifications performed on a copy of the original mesh, while referring to the original mesh geometry. The algorithm has three stages. In the first stage the required number or vertices are generated by iterative simplification or refinement. The second stage performs an initial vertex partition using an area-based relaxation method. The third stage achieves precise isotropic vertex sampling prescribed by a given density function on the mesh. We use a modification of Lloyd’s relaxation method to construct a weighted centroidal Voronoi tessellation of the mesh. We apply these iterations locally on small patches of the mesh that are parameterized into the 2D plane. This allows us to handle arbitrary complex meshes with any genus and any number of boundaries. The efficiency and the accuracy of the remeshing process is achieved using a patch-wise parameterization technique.
Feature sensitive mesh segmentation
- In ACM symposium on Solid and physical modeling (2006), ACM
, 2006
"... Copyright © 2006 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and ..."
Abstract
-
Cited by 21 (5 self)
- Add to MetaCart
Copyright © 2006 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Anisotropic mesh adaptation for evolving triangulated surfaces
- In: Proc. 15th International Meshing Roundtable. (2006
, 1989
"... Summary. Dynamic surfaces arise in many applications, such as free surfaces in multiphase ows and moving interfaces in uid-solid interactions. In many applications, an explicit surface triangulation is used to track the dynamic surfaces, posing signi cant challenges in adapting their meshes, especia ..."
Abstract
-
Cited by 17 (2 self)
- Add to MetaCart
(Show Context)
Summary. Dynamic surfaces arise in many applications, such as free surfaces in multiphase ows and moving interfaces in uid-solid interactions. In many applications, an explicit surface triangulation is used to track the dynamic surfaces, posing signi cant challenges in adapting their meshes, especially if large curvatures and sharp features may dynamically appear or vanish as the surfaces evolve. In this paper, we present an anisotropic mesh adaptation technique to meet these challenges. Our technique strives for optimal aspect ratios of the triangulation to reduce interpolation errors and to capture geometric features based on a novel extension of the quadric-based surface analysis. Our adaptation algorithm combines the operations of vertex redistribution, edge ipping, edge contraction, and edge splitting. Experimental results demonstrate the e ectiveness of our anisotropic adaptation techniques for static and dynamic surfaces. Key words: Mesh adaptation; anisotropic meshes; dynamic surfaces; feature preservation 1
An Incremental Approach to Feature Aligned Quad Dominant Remeshing
, 2008
"... In this paper we present a new algorithm which turns an unstructured triangle mesh into a quad-dominant mesh with edges aligned to the principal directions of the underlying geometry. Instead of computing a globally smooth parameterization or integrating curvature lines along a tangent vector field, ..."
Abstract
-
Cited by 17 (3 self)
- Add to MetaCart
In this paper we present a new algorithm which turns an unstructured triangle mesh into a quad-dominant mesh with edges aligned to the principal directions of the underlying geometry. Instead of computing a globally smooth parameterization or integrating curvature lines along a tangent vector field, we simply apply an iterative relaxation scheme which incrementally aligns the mesh edges to the principal directions. The quad-dominant mesh is eventually obtained by dropping the not-aligned diagonals from the triangle mesh. A post-processing stage is introduced to further improve the results. The major advantage of our algorithm is its conceptual simplicity since it is merely based on elementary mesh operations such as edge collapse, flip, and split. The resulting meshes exhibit a very good alignment to surface features and rather uniform distribution of mesh vertices. This makes them very well-suited, e.g., as Catmull-Clark Subdivision control meshes.
Anisotropic Noise Samples
- TVCG
"... We present a practical approach to generate stochastic anisotropic samples with Poisson-disk characteristic over a two-dimensional domain. In contrast to isotropic samples, we understand anisotropic samples as non-overlapping ellipses whose size and density match a given anisotropic metric. Anisotr ..."
Abstract
-
Cited by 14 (3 self)
- Add to MetaCart
We present a practical approach to generate stochastic anisotropic samples with Poisson-disk characteristic over a two-dimensional domain. In contrast to isotropic samples, we understand anisotropic samples as non-overlapping ellipses whose size and density match a given anisotropic metric. Anisotropic noise samples are useful for many visualization and graphics applications. The spot samples can be used as input for texture generation, e.g., line integral convolution (LIC), but can also be used directly for visualization. The definition of the spot samples using a metric tensor makes them especially suitable for the visualization of tensor fields that can be translated into a metric. Our work combines ideas from sampling theory and mesh generation to approximate generalized blue noise properties. To generate these samples with the desired properties we first construct a set of non-overlapping ellipses whose distribution closely matches the underlying metric. This set of samples is used as input for a generalized anisotropic Lloyd relaxation to distribute noise samples more evenly. Instead of computing the Voronoi tessellation explicitly, we introduce a discrete approach which combines the Voronoi cell and centroid computation in one step. Our method supports automatic packing of the elliptical samples, resulting in textures similar to those generated by anisotropic reaction-diffusion methods. We use Fourier analysis tools for quality measurement of uniformly distributed samples. The resulting samples have nice sampling properties, e.g., they satisfy a blue noise property where low frequencies in the power spectrum are reduced to a minimum.