Results 1  10
of
138
Robust face recognition via sparse representation
 IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2008
"... We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signa ..."
Abstract

Cited by 916 (41 self)
 Add to MetaCart
We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by ℓ 1minimization, we propose a general classification algorithm for (imagebased) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as Eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly, by exploiting the fact that these errors are often sparse w.r.t. to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm, and corroborate the above claims.
Image SuperResolution via Sparse Representation
"... This paper presents a new approach to singleimage superresolution, based on sparse signal representation. Research on image statistics suggests that image patches can be wellrepresented as a sparse linear combination of elements from an appropriately chosen overcomplete dictionary. Inspired by th ..."
Abstract

Cited by 189 (9 self)
 Add to MetaCart
This paper presents a new approach to singleimage superresolution, based on sparse signal representation. Research on image statistics suggests that image patches can be wellrepresented as a sparse linear combination of elements from an appropriately chosen overcomplete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the lowresolution input, and then use the coefficients of this representation to generate the highresolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low resolution and high resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches which simply sample a large amount of image patch pairs, reducing the computation cost substantially. The effectiveness of such a sparsity prior is demonstrated for general image superresolution and also for the special case of face hallucination. In both cases, our algorithm can generate highresolution images that are competitive or even superior in quality to images produced by other similar SR methods, but with faster processing speed.
The benefit of group sparsity
, 2009
"... This paper develops a theory for group Lasso using a concept called strong group sparsity. Our result shows that group Lasso is superior to standard Lasso for strongly groupsparse signals. This provides a convincing theoretical justification for using group sparse regularization when the underlying ..."
Abstract

Cited by 123 (12 self)
 Add to MetaCart
This paper develops a theory for group Lasso using a concept called strong group sparsity. Our result shows that group Lasso is superior to standard Lasso for strongly groupsparse signals. This provides a convincing theoretical justification for using group sparse regularization when the underlying group structure is consistent with the data. Moreover, the theory predicts some limitations of the group Lasso formulation that are confirmed by simulation studies. 1
Compressed Sensing: Theory and Applications
, 2012
"... Compressed sensing is a novel research area, which was introduced in 2006, and since then has already become a key concept in various areas of applied mathematics, computer science, and electrical engineering. It surprisingly predicts that highdimensional signals, which allow a sparse representati ..."
Abstract

Cited by 119 (30 self)
 Add to MetaCart
(Show Context)
Compressed sensing is a novel research area, which was introduced in 2006, and since then has already become a key concept in various areas of applied mathematics, computer science, and electrical engineering. It surprisingly predicts that highdimensional signals, which allow a sparse representation by a suitable basis or, more generally, a frame, can be recovered from what was previously considered highly incomplete linear measurements by using efficient algorithms. This article shall serve as an introduction to and a survey about compressed sensing. Key Words. Dimension reduction. Frames. Greedy algorithms. Illposed inverse problems. `1 minimization. Random matrices. Sparse approximation. Sparse recovery.
Sampling theorems for signals from the union of finitedimensional linear subspaces
 IEEE Trans. on Inform. Theory
, 2009
"... Compressed sensing is an emerging signal acquisition technique that enables signals to be sampled well below the Nyquist rate, given that the signal has a sparse representation in an orthonormal basis. In fact, sparsity in an orthonormal basis is only one possible signal model that allows for sampli ..."
Abstract

Cited by 113 (14 self)
 Add to MetaCart
(Show Context)
Compressed sensing is an emerging signal acquisition technique that enables signals to be sampled well below the Nyquist rate, given that the signal has a sparse representation in an orthonormal basis. In fact, sparsity in an orthonormal basis is only one possible signal model that allows for sampling strategies below the Nyquist rate. In this paper we consider a more general signal model and assume signals that live on or close to the union of linear subspaces of low dimension. We present sampling theorems for this model that are in the same spirit as the NyquistShannon sampling theorem in that they connect the number of required samples to certain model parameters. Contrary to the NyquistShannon sampling theorem, which gives a necessary and sufficient condition for the number of required samples as well as a simple linear algorithm for signal reconstruction, the model studied here is more complex. We therefore concentrate on two aspects of the signal model, the existence of one to one maps to lower dimensional observation spaces and the smoothness of the inverse map. We show that almost all linear maps are one to one when the observation space is at least of the same dimension as the largest dimension of the convex hull of the union of any two subspaces in the model. However, we also show that in order for the inverse map to have certain smoothness properties such as a given finite Lipschitz constant, the required observation dimension necessarily depends logarithmically
Necessary and sufficient conditions on sparsity pattern recovery
, 2009
"... The paper considers the problem of detecting the sparsity pattern of a ksparse vector in R n from m random noisy measurements. A new necessary condition on the number of measurements for asymptotically reliable detection with maximum likelihood (ML) estimation and Gaussian measurement matrices is ..."
Abstract

Cited by 107 (13 self)
 Add to MetaCart
The paper considers the problem of detecting the sparsity pattern of a ksparse vector in R n from m random noisy measurements. A new necessary condition on the number of measurements for asymptotically reliable detection with maximum likelihood (ML) estimation and Gaussian measurement matrices is derived. This necessary condition for ML detection is compared against a sufficient condition for simple maximum correlation (MC) or thresholding algorithms. The analysis shows that the gap between thresholding and ML can be described by a simple expression in terms of the total signaltonoise ratio (SNR), with the gap growing with increasing SNR. Thresholding is also compared against the more sophisticated lasso and orthogonal matching pursuit (OMP) methods. At high SNRs, it is shown that the gap between lasso and OMP over thresholding is described by the range of powers of the nonzero component values of the unknown signals. Specifically, the key benefit of lasso and OMP over thresholding is the ability of lasso and OMP to detect signals with relatively small components.
Signal Processing with Compressive Measurements
, 2009
"... The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquistrate samples. Interestingly, it has been sh ..."
Abstract

Cited by 100 (25 self)
 Add to MetaCart
(Show Context)
The recently introduced theory of compressive sensing enables the recovery of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquistrate samples. Interestingly, it has been shown that random projections are a nearoptimal measurement scheme. This has inspired the design of hardware systems that directly implement random measurement protocols. However, despite the intense focus of the community on signal recovery, many (if not most) signal processing problems do not require full signal recovery. In this paper, we take some first steps in the direction of solving inference problems—such as detection, classification, or estimation—and filtering problems using only compressive measurements and without ever reconstructing the signals involved. We provide theoretical bounds along with experimental results.
Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation
"... In this paper, we consider recovery of jointly sparse multichannel signals from incomplete measurements. Several approaches have been developed to recover the unknown sparse vectors from the given observations, including thresholding, simultaneous orthogonal matching pursuit (SOMP), and convex relax ..."
Abstract

Cited by 100 (22 self)
 Add to MetaCart
(Show Context)
In this paper, we consider recovery of jointly sparse multichannel signals from incomplete measurements. Several approaches have been developed to recover the unknown sparse vectors from the given observations, including thresholding, simultaneous orthogonal matching pursuit (SOMP), and convex relaxation based on a mixed matrix norm. Typically, worstcase analysis is carried out in order to analyze conditions under which the algorithms are able to recover any jointly sparse set of vectors. However, such an approach is not able to provide insights into why joint sparse recovery is superior to applying standard sparse reconstruction methods to each channel individually. Previous work considered an average case analysis of thresholding and SOMP by imposing a probability model on the measured signals. In this paper, our main focus is on analysis of convex relaxation techniques. In particular, we focus on the mixed ℓ2,1 approach to multichannel recovery. We show that under a very mild condition on the sparsity and on the dictionary characteristics, measured for example by the coherence, the probability of recovery failure decays exponentially in the number of channels. This demonstrates that most of the time, multichannel sparse recovery is indeed superior to single channel methods. Our probability bounds are valid and meaningful even for a small number of signals. Using the tools we develop to analyze the convex relaxation method, we also tighten the previous bounds for thresholding and SOMP.
Compressive Sensing Principles and Iterative Sparse Recovery for Inverse and IllPosed Problems
, 2010
"... ..."
(Show Context)