Results 1  10
of
63
On the Relative Expressiveness of Description Logics and Predicate Logics
 ARTIFICIAL INTELLIGENCE JOURNAL
, 1996
"... It is natural to view concept and role definitions in Description Logics as expressing monadic and dyadic predicates in Predicate Calculus. We show that the descriptions built using the constructors usually considered in the DL literature are characterized exactly as the predicates definable by form ..."
Abstract

Cited by 174 (3 self)
 Add to MetaCart
It is natural to view concept and role definitions in Description Logics as expressing monadic and dyadic predicates in Predicate Calculus. We show that the descriptions built using the constructors usually considered in the DL literature are characterized exactly as the predicates definable by formulas in ¨L³, the subset of First Order Predicate Calculus with monadic and dyadic predicates which allows only three variable symbols. In order to handle “number bounds”, we allow numeric quantifiers, and for transitive closure of roles we use infinitary disjunction. Using previous results in the literature concerning languages with limited numbers of variables, we get as corollaries the existence of formulae of FOPC which cannot be expressed as descriptions. We also show that by omitting role composition, descriptions express exactly the formulae in ¨L², which is known to be decidable.
ConjunctiveQuery Containment and Constraint Satisfaction
 Journal of Computer and System Sciences
, 1998
"... Conjunctivequery containment is recognized as a fundamental problem in database query evaluation and optimization. At the same time, constraint satisfaction is recognized as a fundamental problem in artificial intelligence. What do conjunctivequery containment and constraint satisfaction have in c ..."
Abstract

Cited by 168 (14 self)
 Add to MetaCart
(Show Context)
Conjunctivequery containment is recognized as a fundamental problem in database query evaluation and optimization. At the same time, constraint satisfaction is recognized as a fundamental problem in artificial intelligence. What do conjunctivequery containment and constraint satisfaction have in common? Our main conceptual contribution in this paper is to point out that, despite their very different formulation, conjunctivequery containment and constraint satisfaction are essentially the same problem. The reason is that they can be recast as the following fundamental algebraic problem: given two finite relational structures A and B, is there a homomorphism h : A ! B? As formulated above, the homomorphism problem is uniform in the sense that both relational structures A and B are part of the input. By fixing the structure B, one obtains the following nonuniform problem: given a finite relational structure A, is there a homomorphism h : A ! B? In general, nonuniform tractability results do not uniformize. Thus, it is natural to ask: which tractable cases of nonuniform tractability results for constraint satisfaction and conjunctivequery containment do uniformize? Our main technical contribution in this paper is to show that several cases of tractable nonuniform constraint satisfaction problems do indeed uniformize. We exhibit three nonuniform tractability results that uniformize and, thus, give rise to polynomialtime solvable cases of constraint satisfaction and conjunctivequery containment.
Bounded Linear Logic: A Modular Approach to Polynomial Time Computability (Extended Abstract), in: 141
"... A typed, modular paradigm for polynomial time computation is proposed. ..."
Abstract

Cited by 86 (6 self)
 Add to MetaCart
A typed, modular paradigm for polynomial time computation is proposed.
Constraint Satisfaction, Bounded Treewidth, and FiniteVariable Logics
, 2002
"... We systematically investigate the connections between constraint satisfaction problems, structures of bounded treewidth, and definability in logics with a finite number of variables. We first show that constraint satisfaction problems on inputs of treewidth less than k are definable using Datalog ..."
Abstract

Cited by 72 (12 self)
 Add to MetaCart
We systematically investigate the connections between constraint satisfaction problems, structures of bounded treewidth, and definability in logics with a finite number of variables. We first show that constraint satisfaction problems on inputs of treewidth less than k are definable using Datalog programs with at most k variables; this provides a new explanation for the tractability of these classes of problems. After this, we investigate constraint satisfaction on inputs that are homomorphically equivalent to structures of bounded treewidth.
A Combinatorial Characterization of Resolution Width
 In 18th IEEE Conference on Computational Complexity
, 2002
"... We provide a characterization of the resolution width introduced in the context of propositional proof complexity in terms of the existential pebble game introduced in the context of finite model theory. The characterization is tight and purely combinatorial. Our first application of this result i ..."
Abstract

Cited by 51 (5 self)
 Add to MetaCart
We provide a characterization of the resolution width introduced in the context of propositional proof complexity in terms of the existential pebble game introduced in the context of finite model theory. The characterization is tight and purely combinatorial. Our first application of this result is a surprising proof that the minimum space of refuting a 3CNF formula is always bounded from below by the minimum width of refuting it (minus 3). This solves a wellknown open problem. The second application is the unification of several width lower bound arguments, and a new width lower bound for the Dense Linear Order Principle. Since we also show that this principle has resolution refutations of polynomial size, this provides yet another example showing that the sizewidth relationship is tight.
Infinitary Logics and 01 Laws
 Information and Computation
, 1992
"... We investigate the in nitary logic L 1! , in which sentences may have arbitrary disjunctions and conjunctions, but they involve only a nite number of distinct variables. We show that various xpoint logics can be viewed as fragments of L 1! , and we describe a gametheoretic characterizat ..."
Abstract

Cited by 45 (5 self)
 Add to MetaCart
We investigate the in nitary logic L 1! , in which sentences may have arbitrary disjunctions and conjunctions, but they involve only a nite number of distinct variables. We show that various xpoint logics can be viewed as fragments of L 1! , and we describe a gametheoretic characterization of the expressive power of the logic. Finally, we study asymptotic probabilities of properties 1! on nite structures. We show that the 01 law holds for L 1! , i.e., the asymptotic probability of every sentence in this logic exists and is equal to either 0 or 1. This result subsumes earlier work on asymptotic probabilities for various xpoint logics and reveals the boundary of 01 laws for in nitary logics.
A GameTheoretic Approach to Constraint Satisfaction
, 2000
"... We shed light on the connections between different approaches to constraint satisfaction by showing that the main consistency concepts used to derive tractability results for constraint satisfaction are intimately related to certain combinatorial pebble games, called the existential kpebble g ..."
Abstract

Cited by 41 (7 self)
 Add to MetaCart
(Show Context)
We shed light on the connections between different approaches to constraint satisfaction by showing that the main consistency concepts used to derive tractability results for constraint satisfaction are intimately related to certain combinatorial pebble games, called the existential kpebble games, that were originally introduced in the context of Datalog. The crucial insight relating pebble games to constraint satisfaction is that the key concept of strong kconsistency is equivalent to a condition on winning strategies for the Duplicator player in the existential kpebble game. We use this insight to show that strong kconsistency can be established if and only if the Duplicator wins the existential kpebble game. Moreover, whenever strong kconsistency can be established, one method for doing this is to first compute the largest winning strategy for the Duplicator in the existential kpebble game and then modify the original problem by augmenting it with the constraints expressed by the largest winning strategy. This basic result makes it possible to establish deeper connections between pebble games, consistency properties, and tractability of constraint satisfaction. In particular, we use existential kpebble games to introduce the concept of klocality and show that it constitutes a new tractable case of constraint satisfaction that properly extends the well known case in which establishing strong kconsistency implies global consistency.
Fixpoint Logics, Relational Machines, and Computational Complexity
 In Structure and Complexity
, 1993
"... We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have t ..."
Abstract

Cited by 39 (5 self)
 Add to MetaCart
We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have the complexity classes between P and EXPTIME. Our parameterized fixpoint logics capture the complexity classes P, NP, PSPACE, and EXPTIME, but equality is achieved only over ordered structures. There is, however, an inherent mismatch between complexity and logic  while computational devices work on encodings of problems, logic is applied directly to the underlying mathematical structures. To overcome this mismatch, we develop a theory of relational complexity, which bridges tha gap between standard complexity and fixpoint logic. On one hand, we show that questions about containments among standard complexity classes can be translated to questions about containments among relational complex...
Datalog and constraint satisfaction with infinite templates
 In Proceedings of the 23rd International Symposium on Theoretical Aspects of Computer Science (STACS’06), LNCS 3884
, 2006
"... Abstract. On finite structures, there is a wellknown connection between the expressive power of Datalog, finite variable logics, the existential pebble game, and bounded hypertree duality. We study this connection for infinite structures. This has applications for constraint satisfaction with infin ..."
Abstract

Cited by 38 (20 self)
 Add to MetaCart
(Show Context)
Abstract. On finite structures, there is a wellknown connection between the expressive power of Datalog, finite variable logics, the existential pebble game, and bounded hypertree duality. We study this connection for infinite structures. This has applications for constraint satisfaction with infinite templates, i.e., for all computational problems that are closed under disjoint unions and whose complement is closed under homomorphisms. If the template Γ is ωcategorical, we obtain alternative characterizations of bounded Datalog width. We also show that CSP(Γ) can be solved in polynomial time if Γ is ωcategorical and the input is restricted to instances of bounded treewidth. Finally, we prove algebraic characterisations of those ωcategorical templates whose CSP has Datalog width (1, k), and for those whose CSP has strict Datalog width k.