Results 1  10
of
325
Factoring wavelet transforms into lifting steps
 J. Fourier Anal. Appl
, 1998
"... ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This dec ..."
Abstract

Cited by 573 (8 self)
 Add to MetaCart
(Show Context)
ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is wellknown to algebraists (and expressed by the formula); it is also used in linear systems theory in the electrical engineering community. We present here a selfcontained derivation, building the decomposition from basic principles such as the Euclidean algorithm, with a focus on applying it to wavelet filtering. This factorization provides an alternative for the lattice factorization, with the advantage that it can also be used in the biorthogonal, i.e, nonunitary case. Like the lattice factorization, the decomposition presented here asymptotically reduces the computational complexity of the transform by a factor two. It has other applications, such as the possibility of defining a waveletlike transform that maps integers to integers. 1.
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract

Cited by 541 (16 self)
 Add to MetaCart
(Show Context)
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a faster, inplace calculation of the wavelet transform. Several examples are included. Key words. wavelet, multiresolution, second generation wavelet, lifting scheme AMS subject classifications. 42C15 1. Introduction. Wavelets form a versatile tool for representing general functions or data sets. Essentially we can think of them as data building blocks. Their fundamental property is that they allow for representations which are efficient and which can be computed fast. In other words, wavelets are capable of quickly capturing the essence of a data set with only a small set of coefficients. This is based on the fact that most data sets have correlation both in time (or space) and frequenc...
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a number of ideas and approaches to approximate processing as currently being formulated in the computer science community. We then present four examples of signal processing algorithms/systems that are structured with these goals in mind. These examples may be viewed as partial inroads toward the ultimate objective of developing, within the context of signal processing design and implementation,...
The Contourlet Transform: An Efficient Directional Multiresolution Image Representation
 IEEE TRANSACTIONS ON IMAGE PROCESSING
"... The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure t ..."
Abstract

Cited by 510 (20 self)
 Add to MetaCart
The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure that is key in visual information. The main challenge in exploring geometry in images comes from the discrete nature of the data. Thus, unlike other approaches, such as curvelets, that first develop a transform in the continuous domain and then discretize for sampled data, our approach starts with a discretedomain construction and then studies its convergence to an expansion in the continuous domain. Specifically, we construct a discretedomain multiresolution and multidirection expansion using nonseparable filter banks, in much the same way that wavelets were derived from filter banks. This construction results in a flexible multiresolution, local, and directional image expansion using contour segments, and thus it is named the contourlet transform. The discrete contourlet transform has a fast iterated filter bank algorithm that requires an order N operations for Npixel images. Furthermore, we establish a precise link between the developed filter bank and the associated continuousdomain contourlet expansion via a directional multiresolution analysis framework. We show that with parabolic scaling and sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise smooth functions with discontinuities along twice continuously differentiable curves. Finally, we show some numerical experiments demonstrating the potential of contourlets in several image processing applications.
Splines: A Perfect Fit for Signal/Image Processing
 IEEE SIGNAL PROCESSING MAGAZINE
, 1999
"... ..."
(Show Context)
An introduction to wavelets
 IEEE Computational Science and Engineering
, 1995
"... ABSTRACT. Wavelets are mathematical functions that cut up data into different frequency components, and then study each component with a resolution matched to its scale. They have advantages over traditional Fourier methods in analyzing physical situations where the signal contains ..."
Abstract

Cited by 282 (0 self)
 Add to MetaCart
(Show Context)
ABSTRACT. Wavelets are mathematical functions that cut up data into different frequency components, and then study each component with a resolution matched to its scale. They have advantages over traditional Fourier methods in analyzing physical situations where the signal contains
Spacefrequency Quantization for Wavelet Image Coding
, 1997
"... Recently, a new class of image coding algorithms coupling standard scalar quantization of frequency coefficients with treestructured quantization (related to spatial structures) has attracted wide attention because its good performance appears to confirm the promised efficiencies of hierarchical re ..."
Abstract

Cited by 179 (16 self)
 Add to MetaCart
Recently, a new class of image coding algorithms coupling standard scalar quantization of frequency coefficients with treestructured quantization (related to spatial structures) has attracted wide attention because its good performance appears to confirm the promised efficiencies of hierarchical representation [1, 2]. This paper addresses the problem of how spatial quantization modes and standard scalar quantization can be applied in a jointly optimal fashion in an image coder. We consider zerotree quantization (zeroing out treestructured sets of wavelet coefficients) and the simplest form of scalar quantization (a single common uniform scalar quantizer applied to all nonzeroed coefficients), and we formalize the problem of optimizing their joint application and we develop an image coding algorithm for solving the resulting optimization problem. Despite the basic form of the two quantizers considered, the resulting algorithm demonstrates coding performance that is competitive (often...
Building Your Own Wavelets at Home
"... Wavelets have been making an appearance in many pure and applied areas of science and engineering. Computer graphics with its many and varied computational problems has been no exception to this rule. In these notes we will attempt to motivate and explain the basic ideas behind wavelets and what mak ..."
Abstract

Cited by 151 (13 self)
 Add to MetaCart
Wavelets have been making an appearance in many pure and applied areas of science and engineering. Computer graphics with its many and varied computational problems has been no exception to this rule. In these notes we will attempt to motivate and explain the basic ideas behind wavelets and what makes them so successful in application areas. The main
Visibility of Wavelet Quantization Noise
, 1996
"... The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coe ..."
Abstract

Cited by 145 (1 self)
 Add to MetaCart
(Show Context)
The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2 l , where r is display visual resolution in pixels/degree, and l is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.