Results 1  10
of
345
Adapting to unknown smoothness via wavelet shrinkage
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1995
"... We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the princip ..."
Abstract

Cited by 1006 (18 self)
 Add to MetaCart
We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the principle of minimizing the Stein Unbiased Estimate of Risk (Sure) for threshold estimates. The computational effort of the overall procedure is order N log(N) as a function of the sample size N. SureShrink is smoothnessadaptive: if the unknown function contains jumps, the reconstruction (essentially) does also; if the unknown function has a smooth piece, the reconstruction is (essentially) as smooth as the mother wavelet will allow. The procedure is in a sense optimally smoothnessadaptive: it is nearminimax simultaneously over a whole interval of the Besov scale; the size of this interval depends on the choice of mother wavelet. We know from a previous paper by the authors that traditional smoothing methods  kernels, splines, and orthogonal series estimates  even with optimal choices of the smoothing parameter, would be unable to perform
Factoring wavelet transforms into lifting steps
 J. FOURIER ANAL. APPL
, 1998
"... This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decompositio ..."
Abstract

Cited by 584 (8 self)
 Add to MetaCart
(Show Context)
This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is wellknown to algebraists (and expressed by the formula); it is also used in linear systems theory in the electrical engineering community. We present here a selfcontained derivation, building the decomposition from basic principles such as the Euclidean algorithm, with a focus on applying it to wavelet filtering. This factorization provides an alternative for the lattice factorization, with the advantage that it can also be used in the biorthogonal, i.e, nonunitary case. Like the lattice factorization, the decomposition presented here asymptotically reduces the computational complexity of the transform by a factor two. It has other applications, such as the possibility of defining a waveletlike transform that maps integers to integers.
Shiftable Multiscale Transforms
, 1992
"... Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavel ..."
Abstract

Cited by 562 (36 self)
 Add to MetaCart
(Show Context)
Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavelet transforms are also unstable with respect to dilations of the input signal, and in two dimensions, rotations of the input signal. We formalize these problems by defining a type of translation invariance that we call "shiftability". In the spatial domain, shiftability corresponds to a lack of aliasing; thus, the conditions under which the property holds are specified by the sampling theorem. Shiftability may also be considered in the context of other domains, particularly orientation and scale. We explore "jointly shiftable" transforms that are simultaneously shiftable in more than one domain. Two examples of jointly shiftable transforms are designed and implemented: a onedimensional tran...
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a ..."
Abstract

Cited by 539 (15 self)
 Add to MetaCart
(Show Context)
We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a faster, inplace calculation of the wavelet transform. Several examples are included.
Minimax Estimation via Wavelet Shrinkage
, 1992
"... We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minim ..."
Abstract

Cited by 321 (29 self)
 Add to MetaCart
We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minimax over any member of a wide range of Triebel and Besovtype smoothness constraints, and asymptotically minimax over Besov bodies with p q. Linear estimates cannot achieve even the minimax rates over Triebel and Besov classes with p <2, so our method can signi cantly outperform every linear method (kernel, smoothing spline, sieve,:::) in a minimax sense. Variants of our method based on simple threshold nonlinearities are nearly minimax. Our method possesses the interpretation of spatial adaptivity: it reconstructs using a kernel which mayvary in shape and bandwidth from point to point, depending on the data. Least favorable distributions for certain of the Triebel and Besov scales generate objects with sparse wavelet transforms. Many real objects have similarly sparse transforms, which suggests that these minimax results are relevant for practical problems. Sequels to this paper discuss practical implementation, spatial adaptation properties and applications to inverse problems.
The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet Constructions
 in Wavelet Applications in Signal and Image Processing III
, 1995
"... In this paper we present the basic idea behind the lifting scheme, a new construction of biorthogonal wavelets which does not use the Fourier transform. In contrast with earlier papers we introduce lifting purely from a wavelet transform point of view and only consider the wavelet basis functions in ..."
Abstract

Cited by 200 (0 self)
 Add to MetaCart
In this paper we present the basic idea behind the lifting scheme, a new construction of biorthogonal wavelets which does not use the Fourier transform. In contrast with earlier papers we introduce lifting purely from a wavelet transform point of view and only consider the wavelet basis functions in a later stage. We show how lifting leads to a faster, fully inplace implementation of the wavelet transform. Moreover, it can be used in the construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one function. A typical example of the latter are wavelets on the sphere. Keywords: wavelet, biorthogonal, inplace calculation, lifting 1 Introduction At the present day it has become virtually impossible to give the definition of a "wavelet". The research field is growing so fast and novel contributions are made at such a rate that even if one manages to give a definition today, it might be obsolete tomorrow. One, very vague, way of thinking about...
Visibility of Wavelet Quantization Noise
, 1996
"... The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coe ..."
Abstract

Cited by 145 (1 self)
 Add to MetaCart
(Show Context)
The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2 l , where r is display visual resolution in pixels/degree, and l is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
MULTISCALE RECURSIVE ESTIMATION, DATA FUSION, AND REGULARIZATION
"... A current topic of great interest is the multiresolution analysis of signals and the development of multiscale signal processing algorithms. In this paper we describe a framework for modeling stochastic phenomena at multiple scales and for their efficient estimation or reconstruction given partial a ..."
Abstract

Cited by 136 (43 self)
 Add to MetaCart
A current topic of great interest is the multiresolution analysis of signals and the development of multiscale signal processing algorithms. In this paper we describe a framework for modeling stochastic phenomena at multiple scales and for their efficient estimation or reconstruction given partial and/or noisy measurements which may also be at several scales. In particular multiscale signal representations lead naturally to pyramidal or treelike data structures in which each level in the tree corresponds to a particular scale of representaion. Noting that scale plays the role of a timelike variable, we introduce a class of multiscale dynamic models evolving on dyadic trees. The main focus of this paper is on the description, analysis, and application of an extremely efficient optimal estimation algorithm for this class of models. This algorithm consists of a finetocoarse filtering sweep, followed by a coarsetofine smoothing step, corresponding to the dyadic tree generalization of Kalman filtering and RauchTungStiebel smoothing. The Kalman filtering sweep consists of the recursive application of 3 steps: a measurement update step, a finetocoarse prediction step, and a fusion step, the latter of which has no counterpart for time (rather than scale) recursive Kalman filtering. We illustrate the use of our methodology for the fusion of multiresolution data and for
Efficient multiscale regularization with applications to the computation of optical flow
 IEEE Trans. Image Process
, 1994
"... AbsfruetA new approach to regularization methods for image processing is introduced and developed using as a vehicle the problem of computing dense optical flow fields in an image sequence. Standard formulations of this problem require the computationally intensive solution of an elliptic partial d ..."
Abstract

Cited by 105 (35 self)
 Add to MetaCart
(Show Context)
AbsfruetA new approach to regularization methods for image processing is introduced and developed using as a vehicle the problem of computing dense optical flow fields in an image sequence. Standard formulations of this problem require the computationally intensive solution of an elliptic partial differential equation that arises from the often used “smoothness constraint” ’yl”. regularization. The interpretation of the smoothness constraint is utilized as a “fractal prior ” to motivate regularization based on a recently introduced class of multiscale stochastic models. The solution of the new problem formulation is computed with an efficient multiscale algorithm. Experiments on several image sequences demonstrate the substantial computational savings that can be achieved due to the fact that the algorithm is noniterative and in fact has a per pixel computational complexity that is independent of image size. The new approach also has a number of other important advantages. Specifically, multiresolution flow field estimates are available, allowing great flexibility in dealing with the tradeoff between resolution and accuracy. Multiscale error covariance information is also available, which is of considerable use in assessing the accuracy of the estimates. In particular, these error statistics can be used as the basis for a rational procedure for determining the spatiallyvarying optimal reconstruction resolution. Furthermore, if there are compelling reasons to insist upon a standard smoothness constraint, our algorithm provides an excellent initialization for the iterative algorithms associated with the smoothness constraint problem formulation. Finally, the usefulness of our approach should extend to a wide variety of illposed inverse problems in which variational techniques seeking a “smooth ” solution are generally Used. I.