• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

A stochastic differential game for the inhomogeneous infintyLaplace equation (0)

by R Atar, A Budhiraja
Venue:Ann. Probab
Add To MetaCart

Tools

Sorted by:
Results 1 - 10 of 10

On zero-sum stochastic differential games

by Erhan Bayraktar, Song Yao , 2012
"... ar ..."
Abstract - Cited by 4 (0 self) - Add to MetaCart
Abstract not found
(Show Context)

Citation Context

...y for cooperative games (i.e. the so called sup sup case). It is also worth mentioning that inspired by the “tug-of-war” (a discrete-time random turn game, see e.g. [37] and [31]), Atar and Budhiraja =-=[1]-=- studied a zero-sum stochastic differential game with U = V = {x ∈ Rn : |x| = 1} × [0,∞) played until the state process exits a given domain. The authors showed that the value of such a game is the un...

Harnack’s inequality for p-harmonic functions via stochastic games

by Hannes Luiro, Mikko Parviainen, Eero Saksman - Comm. Partial Differential Equations , 1985
"... ar ..."
Abstract - Cited by 4 (0 self) - Add to MetaCart
Abstract not found
(Show Context)

Citation Context

...ns was established by Peres, Schramm, Sheffield and Wilson in [PSSW09], see also [LA98], [Obe05], and [LeG07]. This has inspired further studies to many different directions, see for example [PPS10], =-=[AB10]-=-, [MPRc] as well as led to simplified proofs in the theory of PDEs, see for example [AS10]. 2. Preliminaries Let us start by fixing the basic notation used throughout the work. We denote Bρ(x0) = {x ∈...

On the value of stochastic differential games

by Wendell H. Fleming , 2010
"... Abstract: We consider a two player, zero sum stochastic differential game based on a formulation given by Fleming and Souganidis. The saddle point property is introduced, and it is proved that the unique uniformly continuous bounded viscosity solution of the upper Isaacs PDE with boundary condition ..."
Abstract - Cited by 3 (0 self) - Add to MetaCart
Abstract: We consider a two player, zero sum stochastic differential game based on a formulation given by Fleming and Souganidis. The saddle point property is introduced, and it is proved that the unique uniformly continuous bounded viscosity solution of the upper Isaacs PDE with boundary condition satisfies such a property. Also, it is shown that approximately optimal Markov strategies can be constructed for both players. 1
(Show Context)

Citation Context

...hn-Li [3]. It uses the theory of backward SDEs. An interesting connection between certain ”tug-of-war” stochastic differential games and the infinity Laplace equation was considered in Atar-Budhiraja =-=[1]-=- and Barron-Evans-Jensen [2]. 2 Stochastic differential games Given T > 0 a finite time horizon and t ∈ [0, T ), let (Ωt, F, Pt) be the canonical probability space, defined as Ωt = {ω ∈ C([t, T ]; R k...

MAXIMAL OPERATORS FOR THE p-LAPLACIAN FAMILY

by Pablo Blanc, Juan P. Pinasco, Julio D. Rossi , 2015
"... We prove existence and uniqueness of viscosity solutions for the following problem: max {−∆p1u(x), −∆p2u(x)} = f(x) in a bounded smooth domain Ω ⊂ RN with u = g on ∂Ω. Here −∆pu = (N + p)−1|Du|2−pdiv(|Du|p−2Du) is the 1-homogeneous p−Laplacian and we assume that 2 ≤ p1, p2 ≤ ∞. This equation appe ..."
Abstract - Cited by 1 (1 self) - Add to MetaCart
We prove existence and uniqueness of viscosity solutions for the following problem: max {−∆p1u(x), −∆p2u(x)} = f(x) in a bounded smooth domain Ω ⊂ RN with u = g on ∂Ω. Here −∆pu = (N + p)−1|Du|2−pdiv(|Du|p−2Du) is the 1-homogeneous p−Laplacian and we assume that 2 ≤ p1, p2 ≤ ∞. This equation appears naturally when one considers a tug-of-war game in which one of the players (the one who seeks to maximize the payoff) can choose at every step which are the pa-rameters of the game that regulate the probability of playing a usual Tug-of-War game (without noise) or to play at random. Moreover, the opera-tor max {−∆p1u(x), −∆p2u(x)} provides a natural analogous with respect to p−Laplacians to the Pucci maximal operator for uniformly elliptic operators. We provide two different proofs of existence and uniqueness for this prob-lem. The first one is based in pure PDE methods (in the framework of viscosity solutions) while the second one is more connected to probability and uses game theory.
(Show Context)

Citation Context

...nic functions verify an asymptotic mean value property, see, for example, [28], [13], [16], [21] and [22]. Concerning Tug-of-War games and PDEs the story begins with [33] and [34] and was extended in =-=[3]-=-, [4], [5], [31], etc. Remark that for the p−Laplacian it was proved in [14], [15] the equivalence between viscosity and weak solutions. This probability approach was used to obtain regularity propert...

Tug-of-war, market manipulation and option pricing

by M. Parviainen
"... ar ..."
Abstract - Cited by 1 (0 self) - Add to MetaCart
Abstract not found
(Show Context)

Citation Context

...Brownian motions. To understand the continuous time limit of the outlined price dynamics, as N → ∞, the key difficulty is to understand the asymptotic behavior of the term CNi (t). A solution, due to =-=[AB10]-=- in the context of time independent equations, is to replace √ N with dynamically controlled quantities d+ and d−. This approach is motivated by the connection between tug-of-war games and the infinit...

NASH EQUILIBRIA IN A CLASS OF MARKOV STOPPING GAMES

by O Cavazos-cadena Daniel Hernández-hernández, O Cavazos-cadena
"... This work concerns a class of discrete-time, zero-sum games with two players and Markov transitions on a denumerable space. At each decision time player II can stop the system paying a terminal reward to player I and, if the system is no halted, player I selects an action to drive the system and rec ..."
Abstract - Add to MetaCart
This work concerns a class of discrete-time, zero-sum games with two players and Markov transitions on a denumerable space. At each decision time player II can stop the system paying a terminal reward to player I and, if the system is no halted, player I selects an action to drive the system and receives a running reward from player II. Measuring the performance of a pair of decision strategies by the total expected discounted reward, under standard continuity-compactness conditions it is shown that this stopping game has a value function which is characterized by an equilibrium equation, and such a result is used to establish the existence of a Nash equilibrium. Also, the method of successive approximations is used to construct approximate Nash equilibria for the game.
(Show Context)

Citation Context

... specified below. 1028 R. CAVAZOS-CADENA AND D. HERNÁNDEZ-HERNÁNDEZ The theory of games has interesting applications in diverse areas; see, for instance, Altman and Schwartz [1], Atar and Budhiraja =-=[2]-=-, and the recent book by Kolokoltsov and Malafeyev [5], and it should be mentioned that the topic of Markov Games was initiated in the pioneer papers by Shapley [12] and Zachrisson [17]. Also, stoppin...

Critical Branching Processes, (ii)Large Deviation Properties of Weakly Interacting Processes, (iii)Multiscale Diffusion Approximations for Stochastic Networks in Heavy Traffic, (iv) Adaptive Ergodic Control of Markov Chains, (v)Controlled Stochastic Netwo

by Amarjit Budhiraja , 2010
"... The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comm ..."
Abstract - Add to MetaCart
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
(Show Context)

Citation Context

...D 2uDu−∆∞uDu), (10) is suggested in [26] as the game’s dynamics in the vanishing-ε limit. The relation is rigorously established in examples, but only heuristically justified in general. Recently, in =-=[3]-=-, a two-player zero-sum stochastic differential game (SDG) is considered, for which the value function uniquely solves (8) in the viscosity sense. The dynamics of the state process are given as Xt = x...

associated with the

by Rami Atar, Amarjit Budhiraja , 2008
"... near optimal trajectories for a game ..."
Abstract - Add to MetaCart
near optimal trajectories for a game
(Show Context)

Citation Context

...Du| 2 (D2u Du − ∆∞u Du), (1.3) is suggested in [7] as the game’s dynamics in the vanishing-ε limit. The relation is rigorously established in examples, but only heuristically justified in general. In =-=[3]-=-, a two-player zero-sum stochastic differential game (SDG) is considered, for which the value function uniquely solves (1.1) in the viscosity sense. The goal of the present paper is to show that, with...

unknown title

by Rami Atar, Amarjit Budhiraja , 2008
"... On near optimal trajectories for a game associated with the ∞-Laplacian ..."
Abstract - Add to MetaCart
On near optimal trajectories for a game associated with the ∞-Laplacian
(Show Context)

Citation Context

...| |Du| 2(D2uDu − ∆∞uDu), (1.3) is suggested in [7] as the game’s dynamics in the vanishing-ε limit. The relation is rigorously established in examples, but only heuristically justified in general. In =-=[3]-=-, a two-player zero-sum stochastic differential game (SDG) is considered, for which the value function uniquely solves (1.1) in the viscosity sense. The goal of the present paper is to show that, with...

A Weak Dynamic Programming Principle for Zero-Sum Stochastic Differential Games with Unbounded Controls

by Erhan Bayraktar, Song Yao
"... ar ..."
Abstract - Add to MetaCart
Abstract not found
(Show Context)

Citation Context

...oblem can be solved by a verification theorem instead of the dynamic programming principle. Inspired by the “tug-of-war” (a discrete-time random turn game, see e.g. [31] and [25]), Atar and Budhiraja =-=[1]-=- studied a zero-sum stochastic differential game with U = V = {x ∈ Rn : |x| = 1} × [0,∞) played until the state process exits a given domain. As in Chapter 6 of [22], the authors approximated such a g...

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University