Results 1  10
of
635
Numerical solution of saddle point problems
 ACTA NUMERICA
, 2005
"... Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has b ..."
Abstract

Cited by 320 (25 self)
 Add to MetaCart
(Show Context)
Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for solving this type of systems. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.
Jacobianfree NewtonKrylov methods: a survey of approaches and applications
 J. Comput. Phys
"... Jacobianfree NewtonKrylov (JFNK) methods are synergistic combinations of Newtontype methods for superlinearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations. The link between the two methods is the Jacobianvector product, which ..."
Abstract

Cited by 192 (6 self)
 Add to MetaCart
Jacobianfree NewtonKrylov (JFNK) methods are synergistic combinations of Newtontype methods for superlinearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations. The link between the two methods is the Jacobianvector product, which may be probed approximately without forming and storing the elements of the true Jacobian, through a variety of means. Various approximations to the Jacobian matrix may still be required for preconditioning the resulting Krylov iteration. As with Krylov methods for linear problems, successful application of the JFNK method to any given problem is dependent on adequate preconditioning. JFNK has potential for application throughout problems governed by nonlinear partial dierential equations and integrodierential equations. In this survey article we place JFNK in context with other nonlinear solution algorithms for both boundary value problems (BVPs) and initial value problems (IVPs). We provide an overview of the mechanics of JFNK and attempt to illustrate the wide variety of preconditioning options available. It is emphasized that JFNK can be wrapped (as an accelerator) around another nonlinear xed point method (interpreted as a preconditioning process, potentially with signicant code reuse). The aim of this article is not to trace fully the evolution of JFNK, nor to provide proofs of accuracy or optimal convergence for all of the constituent methods, but rather to present the reader with a perspective on how JFNK may be applicable to problems of physical interest and to provide sources of further practical information. A review paper solicited by the EditorinChief of the Journal of Computational
A sparse approximate inverse preconditioner for nonsymmetric linear systems
 SIAM J. SCI. COMPUT
, 1998
"... This paper is concerned with a new approach to preconditioning for large, sparse linear systems. A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix is developed, and the resulting factorized sparse approximate inverse is used as an explicit preconditioner f ..."
Abstract

Cited by 192 (22 self)
 Add to MetaCart
This paper is concerned with a new approach to preconditioning for large, sparse linear systems. A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix is developed, and the resulting factorized sparse approximate inverse is used as an explicit preconditioner for conjugate gradient–type methods. Some theoretical properties of the preconditioner are discussed, and numerical experiments on test matrices from the Harwell–Boeing collection and from Tim Davis’s collection are presented. Our results indicate that the new preconditioner is cheaper to construct than other approximate inverse preconditioners. Furthermore, the new technique insures convergence rates of the preconditioned iteration which are comparable with those obtained with standard implicit preconditioners.
A New TwIST: TwoStep Iterative Shrinkage/Thresholding Algorithms for Image Restoration
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2007
"... Iterative shrinkage/thresholding (IST) algorithms have been recently proposed to handle a class of convex unconstrained optimization problems arising in image restoration and other linear inverse problems. This class of problems results from combining a linear observation model with a nonquadratic ..."
Abstract

Cited by 184 (25 self)
 Add to MetaCart
(Show Context)
Iterative shrinkage/thresholding (IST) algorithms have been recently proposed to handle a class of convex unconstrained optimization problems arising in image restoration and other linear inverse problems. This class of problems results from combining a linear observation model with a nonquadratic regularizer (e.g., total variation or waveletbased regularization). It happens that the convergence rate of these IST algorithms depends heavily on the linear observation operator, becoming very slow when this operator is illconditioned or illposed. In this paper, we introduce twostep IST (TwIST) algorithms, exhibiting much faster convergence rate than IST for illconditioned problems. For a vast class of nonquadratic convex regularizers ( norms, some Besov norms, and total variation), we show that TwIST converges to a minimizer of the objective function, for a given range of values of its parameters. For noninvertible observation operators, we introduce a monotonic version of TwIST (MTwIST); although the convergence proof does not apply to this scenario, we give experimental evidence that MTwIST exhibits similar speed gains over IST. The effectiveness of the new methods are experimentally confirmed on problems of image deconvolution and of restoration with missing samples.
Fast image recovery using variable splitting and constrained optimization
 IEEE Trans. Image Process
, 2010
"... Abstract—We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an `2 datafidelity term and a nonsmooth regularizer. This formulation allows both wavele ..."
Abstract

Cited by 125 (9 self)
 Add to MetaCart
(Show Context)
Abstract—We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an `2 datafidelity term and a nonsmooth regularizer. This formulation allows both waveletbased (with orthogonal or framebased representations) regularization or totalvariation regularization. Our approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is then addressed with an augmented Lagrangian method. The proposed algorithm is an instance of the socalled alternating direction method of multipliers, for which convergence has been proved. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is faster than the current state of the art methods. Index Terms—Augmented Lagrangian, compressive sensing, convex optimization, image reconstruction, image restoration,
Constraint Preconditioning for Indefinite Linear Systems
 SIAM J. Matrix Anal. Appl
, 2000
"... . The problem of nding good preconditioners for the numerical solution of indenite linear systems is considered. Special emphasis is put on preconditioners that have a 2 2 block structure and which incorporate the (1; 2) and (2; 1) blocks of the original matrix. Results concerning the spectrum and ..."
Abstract

Cited by 109 (14 self)
 Add to MetaCart
. The problem of nding good preconditioners for the numerical solution of indenite linear systems is considered. Special emphasis is put on preconditioners that have a 2 2 block structure and which incorporate the (1; 2) and (2; 1) blocks of the original matrix. Results concerning the spectrum and form of the eigenvectors of the preconditioned matrix and its minimum polynomial are given. The consequences of these results are considered for a variety of Krylov subspace methods. Numerical experiments validate these conclusions. Key words. preconditioning, indenite matrices, Krylov subspace methods AMS subject classications. 65F10, 65F15, 65F50 1. Introduction. In this paper, we are concerned with investigating a new class of preconditioners for indenite systems of linear equations of a sort which arise in constrained optimization as well as in leastsquares, saddlepoint and Stokes problems. We attempt to solve the indenite linear system A B T B 0  {z } A x 1 x...
A survey on pagerank computing
 Internet Mathematics
, 2005
"... Abstract. This survey reviews the research related to PageRank computing. Components of a PageRank vector serve as authority weights for web pages independent of their textual content, solely based on the hyperlink structure of the web. PageRank is typically used as a web search ranking component. T ..."
Abstract

Cited by 104 (0 self)
 Add to MetaCart
Abstract. This survey reviews the research related to PageRank computing. Components of a PageRank vector serve as authority weights for web pages independent of their textual content, solely based on the hyperlink structure of the web. PageRank is typically used as a web search ranking component. This defines the importance of the model and the data structures that underly PageRank processing. Computing even a single PageRank is a difficult computational task. Computing many PageRanks is a much more complex challenge. Recently, significant effort has been invested in building sets of personalized PageRank vectors. PageRank is also used in many diverse applications other than ranking. We are interested in the theoretical foundations of the PageRank formulation, in the acceleration of PageRank computing, in the effects of particular aspects of web graph structure on the optimal organization of computations, and in PageRank stability. We also review alternative models that lead to authority indices similar to PageRank and the role of such indices in applications other than web search. We also discuss linkbased search personalization and outline some aspects of PageRank infrastructure from associated measures of convergence to link preprocessing. 1.
Recent computational developments in Krylov subspace methods for linear systems
 NUMER. LINEAR ALGEBRA APPL
, 2007
"... Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are metho ..."
Abstract

Cited by 86 (12 self)
 Add to MetaCart
Many advances in the development of Krylov subspace methods for the iterative solution of linear systems during the last decade and a half are reviewed. These new developments include different versions of restarted, augmented, deflated, flexible, nested, and inexact methods. Also reviewed are methods specifically tailored to systems with special properties such as special forms of symmetry and those depending on one or more parameters.