Results 1  10
of
28
AntiCollusion Fingerprinting for Multimedia
 IEEE Transactions on Signal Processing
, 2003
"... Digital fingerprinting is a technique for identifying users who might try to use multimedia content for unintended purposes, such as redistribution. These fingerprints are typically embedded into the content using watermarking techniques that are designed to be robust to a variety of attacks. A cost ..."
Abstract

Cited by 105 (27 self)
 Add to MetaCart
Digital fingerprinting is a technique for identifying users who might try to use multimedia content for unintended purposes, such as redistribution. These fingerprints are typically embedded into the content using watermarking techniques that are designed to be robust to a variety of attacks. A coste#ective attack against such digital fingerprints is collusion, where several di#erently marked copies of the same content are combined to disrupt the underlying fingerprints. In this paper, we investigate the problem of designing fingerprints that can withstand collusion and allow for the identification of colluders. We begin by introducing the collusion problem for additive embedding. We then study the e#ect that averaging collusion has upon orthogonal modulation. We introduce an e#cient detection algorithm for identifying the fingerprints associated with K colluders that requires log(n/K)) correlations for a group of n users. We next develop a fingerprinting scheme based upon code modulation that does not require as many basis signals as orthogonal modulation. We propose a new class of codes, called anticollusion codes (ACC), which have the property that the composition of any subset of K or fewer codevectors is unique. Using this property, we can therefore identify groups of K or fewer colluders. We present a construction of binaryvalued ACC under the logical AND operation that uses the theory of combinatorial designs and is suitable for both the ono# keying and antipodal form of binary code modulation. In order to accommodate n users, our code construction requires only # n) orthogonal signals for a given number of colluders. We introduce four di#erent detection strategies that can be used with our ACC for identifying a suspect set of colluders. We demonstrate th...
Searching in an Unknown Environment: An Optimal Randomized Algorithm for the CowPath Problem
, 1993
"... Searching for a goal is a central and extensively studied problem in computer science. In classical searching problems, the cost of a search function is simply the number of queries made to an oracle that knows the position of the goal. In many robotics problems, as well as in problems from other ar ..."
Abstract

Cited by 69 (3 self)
 Add to MetaCart
Searching for a goal is a central and extensively studied problem in computer science. In classical searching problems, the cost of a search function is simply the number of queries made to an oracle that knows the position of the goal. In many robotics problems, as well as in problems from other areas, we want to charge a cost proportional to the distance between queries (e.g., the time required to travel between two query points). With this cost function in mind, the abstract problem known as the wlane cowpath problem was designed. There are known optimal deterministic algorithms for the cowpath problem, and we give the first randomized algorithm in this paper. We show that our algorithm is optimal for two paths (w = 2), and give evidence that it is optimal for larger values of w. Subsequent to the preliminary of version of this paper, Kao, Ma, Sipser, and Yin [10] have shown that our algorithm is indeed optimal for all w 2. Our randomized algorithm gives expected performance tha...
Generalized binary search
 In Proceedings of the 46th Allerton Conference on Communications, Control, and Computing
, 2008
"... This paper addresses the problem of noisy Generalized Binary Search (GBS). GBS is a wellknown greedy algorithm for determining a binaryvalued hypothesis through a sequence of strategically selected queries. At each step, a query is selected that most evenly splits the hypotheses under consideratio ..."
Abstract

Cited by 58 (0 self)
 Add to MetaCart
(Show Context)
This paper addresses the problem of noisy Generalized Binary Search (GBS). GBS is a wellknown greedy algorithm for determining a binaryvalued hypothesis through a sequence of strategically selected queries. At each step, a query is selected that most evenly splits the hypotheses under consideration into two disjoint subsets, a natural generalization of the idea underlying classic binary search. GBS is used in many applications, including fault testing, machine diagnostics, disease diagnosis, job scheduling, image processing, computer vision, and active learning. In most of these cases, the responses to queries can be noisy. Past work has provided a partial characterization of GBS, but existing noisetolerant versions of GBS are suboptimal in terms of query complexity. This paper presents an optimal algorithm for noisy GBS and demonstrates its application to learning multidimensional threshold functions. 1
Online Prediction and Conversion Strategies
 Machine Learning
, 1994
"... We study the problem of deterministically predicting boolean values by combining the boolean predictions... ..."
Abstract

Cited by 50 (18 self)
 Add to MetaCart
(Show Context)
We study the problem of deterministically predicting boolean values by combining the boolean predictions...
Error Correcting Tournaments
, 2008
"... Abstract. We present a family of adaptive pairwise tournaments that are provably robust against large error fractions when used to determine the largest element in a set. The tournaments use nk pairwise comparisons but have only O(k + log n) depth, where n is the number of players and k is the robus ..."
Abstract

Cited by 26 (4 self)
 Add to MetaCart
(Show Context)
Abstract. We present a family of adaptive pairwise tournaments that are provably robust against large error fractions when used to determine the largest element in a set. The tournaments use nk pairwise comparisons but have only O(k + log n) depth, where n is the number of players and k is the robustness parameter (for reasonable values of n and k). These tournaments also give a reduction from multiclass to binary classification in machine learning, yielding the best known analysis for the problem. 1
Sorting and Searching in the Presence of Memory Faults (without Redundancy)
 Proc. 36th ACM Symposium on Theory of Computing (STOC’04
, 2004
"... We investigate the design of algorithms resilient to memory faults, i.e., algorithms that, despite the corruption of some memory values during their execution, are able to produce a correct output on the set of uncorrupted values. In this framework, we consider two fundamental problems: sorting and ..."
Abstract

Cited by 21 (4 self)
 Add to MetaCart
We investigate the design of algorithms resilient to memory faults, i.e., algorithms that, despite the corruption of some memory values during their execution, are able to produce a correct output on the set of uncorrupted values. In this framework, we consider two fundamental problems: sorting and searching. In particular, we prove that any O(n log n) comparisonbased sorting algorithm can tolerate at most O((n log n) ) memory faults. Furthermore, we present one comparisonbased sorting algorithm with optimal space and running time that is resilient to O((n log n) ) faults. We also prove polylogarithmic lower and upper bounds on faulttolerant searching.
Optimal resilient sorting and searching in the presence of memory faults
 IN PROC. 33RD INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES AND PROGRAMMING, VOLUME 4051 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2006
"... We investigate the problem of reliable computation in the presence of faults that may arbitrarily corrupt memory locations. In this framework, we consider the problems of sorting and searching in optimal time while tolerating the largest possible number of memory faults. In particular, we design an ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
We investigate the problem of reliable computation in the presence of faults that may arbitrarily corrupt memory locations. In this framework, we consider the problems of sorting and searching in optimal time while tolerating the largest possible number of memory faults. In particular, we design an O(n log n) time sorting algorithm that can optimally tolerate up to O ( √ n log n) memory faults. In the special case of integer sorting, we present an algorithm with linear expected running time that can tolerate O ( √ n) faults. We also present a randomized searching algorithm that can optimally tolerate up to O(log n) memory faults in O(log n) expected time, and an almost optimal deterministic searching algorithm that can tolerate O((log n) 1−ǫ) faults, for any small positive constant ǫ, in O(log n) worstcase time. All these results improve over previous bounds.
Resilient search trees
 IN PROCEEDINGS OF 18TH ACMSIAM SODA
, 2007
"... We investigate the problem of computing in a reliable fashion in the presence of faults that may arbitrarily corrupt memory locations. In this framework, we focus on the design of resilient data structures, i.e., data structures that, despite the corruption of some memory values during their lifetim ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
We investigate the problem of computing in a reliable fashion in the presence of faults that may arbitrarily corrupt memory locations. In this framework, we focus on the design of resilient data structures, i.e., data structures that, despite the corruption of some memory values during their lifetime, are nevertheless able to operate correctly (at least) on the set of uncorrupted values. In particular, we present resilient search trees which achieve optimal time and space bounds while tolerating up to O ( √ log n) memory faults, where n is the current number of items in the search tree. In more detail, our resilient search trees are able to insert, delete and search for a key in O(log n + δ 2) amortized time, where δ is an upper bound on the total number of faults. The space required is O(n + δ).
Optimal resilient dynamic dictionaries
 IN PROCEEDINGS OF 15TH EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA
, 2007
"... We investigate the problem of computing in the presence of faults that may arbitrarily (i.e., adversarially) corrupt memory locations. In the faulty memory model, any memory cell can get corrupted at any time, and corrupted cells cannot be distinguished from uncorrupted ones. An upper bound δ on the ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
(Show Context)
We investigate the problem of computing in the presence of faults that may arbitrarily (i.e., adversarially) corrupt memory locations. In the faulty memory model, any memory cell can get corrupted at any time, and corrupted cells cannot be distinguished from uncorrupted ones. An upper bound δ on the number of corruptions and O(1) reliable memory cells are provided. In this model, we focus on the design of resilient dictionaries, i.e., dictionaries which are able to operate correctly (at least) on the set of uncorrupted keys. We first present a simple resilient dynamic search tree, based on random sampling, with O(log n+δ) expected amortized cost per operation, and O(n) space complexity. We then propose an optimal deterministic static dictionary supporting searches in Θ(log n+δ) time in the worst case, and we show how to use it in a dynamic setting in order to support updates in O(log n + δ) amortized time. Our dynamic dictionary also supports range queries in O(log n+δ+t) worst case time, where t is the size of the output. Finally, we show that every resilient search tree (with some reasonable properties) must take Ω(log n + δ) worstcase time per search.