Results 11  20
of
1,223
Optimal inapproximability results for MAXCUT and other 2variable CSPs?
, 2005
"... In this paper we show a reduction from the Unique Games problem to the problem of approximating MAXCUT to within a factor of ffGW + ffl, for all ffl> 0; here ffGW ss.878567 denotes the approximation ratio achieved by the GoemansWilliamson algorithm [25]. This implies that if the Unique Games ..."
Abstract

Cited by 238 (32 self)
 Add to MetaCart
(Show Context)
In this paper we show a reduction from the Unique Games problem to the problem of approximating MAXCUT to within a factor of ffGW + ffl, for all ffl> 0; here ffGW ss.878567 denotes the approximation ratio achieved by the GoemansWilliamson algorithm [25]. This implies that if the Unique Games
Free Bits, PCPs and NonApproximability  Towards Tight Results
, 1996
"... This paper continues the investigation of the connection between proof systems and approximation. The emphasis is on proving tight nonapproximability results via consideration of measures like the "free bit complexity" and the "amortized free bit complexity" of proof systems. ..."
Abstract

Cited by 224 (39 self)
 Add to MetaCart
This paper continues the investigation of the connection between proof systems and approximation. The emphasis is on proving tight nonapproximability results via consideration of measures like the "free bit complexity" and the "amortized free bit complexity" of proof systems.
Monotonicity of primaldual interiorpoint algorithms for semidefinite programming problems
, 1998
"... We present primaldual interiorpoint algorithms with polynomial iteration bounds to find approximate solutions of semidefinite programming problems. Our algorithms achieve the current best iteration bounds and, in every iteration of our algorithms, primal and dual objective values are strictly imp ..."
Abstract

Cited by 219 (36 self)
 Add to MetaCart
We present primaldual interiorpoint algorithms with polynomial iteration bounds to find approximate solutions of semidefinite programming problems. Our algorithms achieve the current best iteration bounds and, in every iteration of our algorithms, primal and dual objective values are strictly improved.
Approximate graph coloring by semidefinite programming
 Proc. 35 th IEEE FOCS, IEEE
, 1994
"... a coloring is called the chromatic number of�, and is usually denoted by��.Determining the chromatic number of a graph is known to be NPhard (cf. [19]). Besides its theoretical significance as a canonical NPhard problem, graph coloring arises naturally in a variety of applications such as register ..."
Abstract

Cited by 212 (6 self)
 Add to MetaCart
(Show Context)
a coloring is called the chromatic number of�, and is usually denoted by��.Determining the chromatic number of a graph is known to be NPhard (cf. [19]). Besides its theoretical significance as a canonical NPhard problem, graph coloring arises naturally in a variety of applications such as register allocation [11, 12, 13] is the maximum degree of any vertex. Beand timetable/examination scheduling [8, 40]. In many We consider the problem of coloring�colorable graphs with the fewest possible colors. We give a randomized polynomial time algorithm which colors a 3colorable graph on vertices with� � ���� colors where sides giving the best known approximation ratio in terms of, this marks the first nontrivial approximation result as a function of the maximum degree. This result can be generalized to�colorable graphs to obtain a coloring using�� � ��� � � � �colors. Our results are inspired by the recent work of Goemans and Williamson who used an algorithm for semidefinite optimization problems, which generalize linear programs, to obtain improved approximations for the MAX CUT and MAX 2SAT problems. An intriguing outcome of our work is a duality relationship established between the value of the optimum solution to our semidefinite program and the Lovász�function. We show lower bounds on the gap between the optimum solution of our semidefinite program and the actual chromatic number; by duality this also demonstrates interesting new facts about the�function. 1
The Dense kSubgraph Problem
 Algorithmica
, 1999
"... This paper considers the problem of computing the dense kvertex subgraph of a given graph, namely, the subgraph with the most edges. An approximation algorithm is developed for the problem, with approximation ratio O(n ffi ), for some ffi ! 1=3. 1 Introduction We study the dense ksubgraph (D ..."
Abstract

Cited by 205 (12 self)
 Add to MetaCart
This paper considers the problem of computing the dense kvertex subgraph of a given graph, namely, the subgraph with the most edges. An approximation algorithm is developed for the problem, with approximation ratio O(n ffi ), for some ffi ! 1=3. 1 Introduction We study the dense ksubgraph (DkS) maximization problem, of computing the dense k vertex subgraph of a given graph. That is, on input a graph G and a parameter k, we are interested in finding a set of k vertices with maximum average degree in the subgraph induced by this set. As this problem is NPhard (say, by reduction from Clique), we consider approximation algorithms for this problem. We obtain a polynomial time algorithm that on any input (G; k) returns a subgraph of size k whose average degree is within a factor of at most n ffi from the optimum solution, where n is the number of vertices in the input graph G, and ffi ! 1=3 is some universal constant. Unfortunately, we are unable to present a complementary negati...
Two Algorithms for NearestNeighbor Search in High Dimensions
, 1997
"... Representing data as points in a highdimensional space, so as to use geometric methods for indexing, is an algorithmic technique with a wide array of uses. It is central to a number of areas such as information retrieval, pattern recognition, and statistical data analysis; many of the problems aris ..."
Abstract

Cited by 201 (0 self)
 Add to MetaCart
(Show Context)
Representing data as points in a highdimensional space, so as to use geometric methods for indexing, is an algorithmic technique with a wide array of uses. It is central to a number of areas such as information retrieval, pattern recognition, and statistical data analysis; many of the problems arising in these applications can involve several hundred or several thousand dimensions. We consider the nearestneighbor problem for ddimensional Euclidean space: we wish to preprocess a database of n points so that given a query point, one can efficiently determine its nearest neighbors in the database. There is a large literature on algorithms for this problem, in both the exact and approximate cases. The more sophisticated algorithms typically achieve a query time that is logarithmic in n at the expense of an exponential dependence on the dimension d; indeed, even the averagecase analysis of heuristics such as kd trees reveals an exponential dependence on d in the query time. In this wor...
Polynomial Time Approximation Schemes for Dense Instances of NPHard Problems
, 1995
"... We present a unified framework for designing polynomial time approximation schemes (PTASs) for "dense" instances of many NPhard optimization problems, including maximum cut, graph bisection, graph separation, minimum kway cut with and without specified terminals, and maximum 3satisfiabi ..."
Abstract

Cited by 195 (32 self)
 Add to MetaCart
We present a unified framework for designing polynomial time approximation schemes (PTASs) for "dense" instances of many NPhard optimization problems, including maximum cut, graph bisection, graph separation, minimum kway cut with and without specified terminals, and maximum 3satisfiability. By dense graphs we mean graphs with minimum degree &Omega;(n), although our algorithms solve most of these problems so long as the average degree is &Omega;(n). Denseness for nongraph problems is defined similarly. The unified framework begins with the idea of exhaustive sampling: picking a small random set of vertices, guessing where they go on the optimum solution, and then using their placement to determine the placement of everything else. The approach then develops into a PTAS for approximating certain smooth integer programs where the objective function and the constraints are "dense" polynomials of constant degree.
Efficient Algorithms for Online Decision Problems
 J. Comput. Syst. Sci
, 2003
"... In an online decision problem, one makes a sequence of decisions without knowledge of the future. Tools from learning such as Weighted Majority and its many variants [13, 18, 4] demonstrate that online algorithms can perform nearly as well as the best single decision chosen in hindsight, even when t ..."
Abstract

Cited by 190 (3 self)
 Add to MetaCart
In an online decision problem, one makes a sequence of decisions without knowledge of the future. Tools from learning such as Weighted Majority and its many variants [13, 18, 4] demonstrate that online algorithms can perform nearly as well as the best single decision chosen in hindsight, even when there are exponentially many possible decisions. However, the naive application of these algorithms is inefficient for such large problems. For some problems with nice structure, specialized efficient solutions have been developed [10, 16, 17, 6, 3].
PseudoBoolean Optimization
 DISCRETE APPLIED MATHEMATICS
, 2001
"... This survey examines the state of the art of a variety of problems related to pseudoBoolean optimization, i.e. to the optimization of set functions represented by closed algebraic expressions. The main parts of the survey examine general pseudoBoolean optimization, the specially important case of ..."
Abstract

Cited by 183 (5 self)
 Add to MetaCart
This survey examines the state of the art of a variety of problems related to pseudoBoolean optimization, i.e. to the optimization of set functions represented by closed algebraic expressions. The main parts of the survey examine general pseudoBoolean optimization, the specially important case of quadratic pseudoBoolean optimization (to which every pseudoBoolean optimization can be reduced), several other important special classes, and approximation algorithms.
The Convex Geometry of Linear Inverse Problems
, 2010
"... In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr ..."
Abstract

Cited by 181 (18 self)
 Add to MetaCart
In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered are those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include wellstudied cases such as sparse vectors (e.g., signal processing, statistics) and lowrank matrices (e.g., control, statistics), as well as several others including sums of a few permutations matrices (e.g., ranked elections, multiobject tracking), lowrank tensors (e.g., computer vision, neuroscience), orthogonal matrices (e.g., machine learning), and atomic measures (e.g., system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial