Results 1  10
of
86
InductiveDataType Systems
, 2002
"... In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the leI two authors presented a combined lmbined made of a (strongl normal3zG9 alrmal rewrite system and a typed #calA#Ik enriched by patternmatching definitions folnitio a certain format,calat the "General Schem ..."
Abstract

Cited by 821 (23 self)
 Add to MetaCart
In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the leI two authors presented a combined lmbined made of a (strongl normal3zG9 alrmal rewrite system and a typed #calA#Ik enriched by patternmatching definitions folnitio a certain format,calat the "General Schema", whichgeneral39I theusual recursor definitions fornatural numbers and simil9 "basic inductive types". This combined lmbined was shown to bestrongl normalIk39f The purpose of this paper is toreformul33 and extend theGeneral Schema in order to make it easil extensibl3 to capture a more general cler of inductive types, cals, "strictly positive", and to ease the strong normalgAg9Ik proof of theresulGGg system. Thisresul provides a computation model for the combination of anal"DAfGI specification language based on abstract data types and of astrongl typed functional language with strictly positive inductive types.
A Partial KArboretum of Graphs With Bounded Treewidth
 J. Algorithms
, 1998
"... The notion of treewidth has seen to be a powerful vehicle for many graph algorithmic studies. This survey paper wants to give an overview of many classes of graphs that can be seen to have a uniform upper bound on the treewidth of graphs in the class. Also, some mutual relations between such classes ..."
Abstract

Cited by 325 (35 self)
 Add to MetaCart
The notion of treewidth has seen to be a powerful vehicle for many graph algorithmic studies. This survey paper wants to give an overview of many classes of graphs that can be seen to have a uniform upper bound on the treewidth of graphs in the class. Also, some mutual relations between such classes are discussed.
The monadic secondorder logic of graphs I. Recognizable sets of Finite Graphs
 Information and Computation
, 1990
"... The notion of a recognizable sef offinite graphs is introduced. Every set of finite graphs, that is definable in monadic secondorder logic is recognizable, but not vice versa. The monadic secondorder theory of a contextfree set of graphs is decidable. 0 19W Academic Press. Inc. This paper begins ..."
Abstract

Cited by 301 (17 self)
 Add to MetaCart
(Show Context)
The notion of a recognizable sef offinite graphs is introduced. Every set of finite graphs, that is definable in monadic secondorder logic is recognizable, but not vice versa. The monadic secondorder theory of a contextfree set of graphs is decidable. 0 19W Academic Press. Inc. This paper begins an investigation of the monadic secondorder logic of graphs and of sets of graphs, using techniques from universal algebra, and the theory of formal languages. (By a graph, we mean a finite directed hyperedgelabelled hypergraph, equipped with a sequence of distinguished vertices.) A survey of this research can be found in Courcelle [ 111. An algebraic structure on the set of graphs (in the above sense) has been proposed by Bauderon and Courcelle [2,7]. The notion of a recognizable set of finite graphs follows, as an instance of the general notion of recognizability introduced by Mezei and Wright in [25]. A graph can also be considered as a logical structure of a certain type. Hence, properties of graphs can be written in firstorder logic or in secondorder logic. It turns out that monadic secondorder logic, where quantifications over sets of vertices and sets of edges are used, is a reasonably powerful logical language (in which many usual graph properties can be written), for which one can obtain decidability results. These decidability results do not hold for secondorder logic, where quantifications over binary relations can also be used. Our main theorem states that every definable set of finite graphs (i.e., every set that is the set of finite graphs satisfying a graph property expressible in monadic secondorder logic) is recognizable. * This work has been supported by the “Programme de Recherches Coordonntes: Mathematiques et Informatique.”
The Expression Of Graph Properties And Graph Transformations In Monadic SecondOrder Logic
, 1997
"... By considering graphs as logical structures, one... ..."
Abstract

Cited by 162 (40 self)
 Add to MetaCart
(Show Context)
By considering graphs as logical structures, one...
Rewriting Logic as a Semantic Framework for Concurrency: a Progress Report
, 1996
"... . This paper surveys the work of many researchers on rewriting logic since it was first introduced in 1990. The main emphasis is on the use of rewriting logic as a semantic framework for concurrency. The goal in this regard is to express as faithfully as possible a very wide range of concurrency mod ..."
Abstract

Cited by 87 (24 self)
 Add to MetaCart
. This paper surveys the work of many researchers on rewriting logic since it was first introduced in 1990. The main emphasis is on the use of rewriting logic as a semantic framework for concurrency. The goal in this regard is to express as faithfully as possible a very wide range of concurrency models, each on its own terms, avoiding any encodings or translations. Bringing very different models under a common semantic framework makes easier to understand what different models have in common and how they differ, to find deep connections between them, and to reason across their different formalisms. It becomes also much easier to achieve in a rigorous way the integration and interoperation of different models and languages whose combination offers attractive advantages. The logic and model theory of rewriting logic are also summarized, a number of current research directions are surveyed, and some concluding remarks about future directions are made. Table of Contents 1 In...
An algebraic theory of graph reduction
, 1993
"... We show how membership in classes of graphs definable m monwhc secondorder]oglc and of bounded treewidth can be decided by finite sets of terminating reduction rules. The method is constructive in the sense that wc describe an algorlthm that wdl produce, from J formula in monxhc secondorder Ioglc ..."
Abstract

Cited by 71 (8 self)
 Add to MetaCart
We show how membership in classes of graphs definable m monwhc secondorder]oglc and of bounded treewidth can be decided by finite sets of terminating reduction rules. The method is constructive in the sense that wc describe an algorlthm that wdl produce, from J formula in monxhc secondorder Ioglc and an mleger k such that the class dcfmed by the formul ~ IS of treewidth s k, a set of rewrite rules that rcducxs any member of the elms to one of’ firrltely many graphs, in a number of steps bounded by the size c~f the graph. This reduction syetem ymlds an algorithm that runs m time linear m the size of the graph. We illustrate our results with reduction systems that recognize some families of outerplanar and planar graphs.
Monadic secondorder definable graph transductions: A survey
 TCS
, 1994
"... Courcelle, B., Monadic secondorder definable graph transductions: a survey, Theoretical Computer Science 126 (1994) 5375. Formulas of monadic secondorder logic can be used to specify graph transductions, i.e., multivalued functions from graphs to graphs. We obtain in this way classes of graph tr ..."
Abstract

Cited by 59 (8 self)
 Add to MetaCart
Courcelle, B., Monadic secondorder definable graph transductions: a survey, Theoretical Computer Science 126 (1994) 5375. Formulas of monadic secondorder logic can be used to specify graph transductions, i.e., multivalued functions from graphs to graphs. We obtain in this way classes of graph transductions, called monadic secondorder definable graph transductions (or, more simply, d&able transductions) that are closed under composition and preserve the two known classes of contextfree sets of graphs, namely the class of hyperedge replacement (HR) and the class of vertex replacement (VR) sets. These two classes can be characterized in terms of definable transductions and recognizable sets of finite trees, independently of the rewriting mechanisms used to define the HR and VR grammars. When restricted to words, the definable transductions are strictly more powerful than the rational transductions such that the image of every finite word is finite; they do not preserve contextfree languages. We also describe the sets of discrete (edgeless) labelled graphs that are the images of HR and VR sets under definable transductions: this gives a version of Parikh’s theorem (i.e., the characterization of the commutative images of contextfree languages) which extends the classical
An Algebraic Presentation of Term Graphs, via GSMonoidal Categories
 Applied Categorical Structures
, 1999
"... . We present a categorical characterisation of term graphs (i.e., finite, directed acyclic graphs labeled over a signature) that parallels the wellknown characterisation of terms as arrows of the algebraic theory of a given signature (i.e., the free Cartesian category generated by it). In particula ..."
Abstract

Cited by 39 (25 self)
 Add to MetaCart
(Show Context)
. We present a categorical characterisation of term graphs (i.e., finite, directed acyclic graphs labeled over a signature) that parallels the wellknown characterisation of terms as arrows of the algebraic theory of a given signature (i.e., the free Cartesian category generated by it). In particular, we show that term graphs over a signature \Sigma are onetoone with the arrows of the free gsmonoidal category generated by \Sigma. Such a category satisfies all the axioms for Cartesian categories but for the naturality of two transformations (the discharger ! and the duplicator r), providing in this way an abstract and clear relationship between terms and term graphs. In particular, the absence of the naturality of r and ! has a precise interpretation in terms of explicit sharing and of loss of implicit garbage collection, respectively. Keywords: algebraic theories, directed acyclic graphs, gsmonoidal categories, symmetric monoidal categories, term graphs. Mathematical Subject Clas...
The monadic secondorder logic of graphs V: on closing the gap between definability and recognizability
, 1991
"... ..."
An Inductive View of Graph Transformation
 In Workshop on Algebraic Development Techniques
, 1998
"... . The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result i ..."
Abstract

Cited by 35 (14 self)
 Add to MetaCart
(Show Context)
. The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result is built: This is the role played by (the application of) a substitution in term rewriting. Or inductively, showing how to build the class of all possible reductions from a set of basic ones: For term rewriting, this is the usual definition of the rewrite relation as the minimal closure of the rewrite rules. As far as graph transformation is concerned, the operational view is by far more popular: In this paper we lay the basis for the orthogonal view. We first provide an inductive description for graphs as arrows of a freely generated dgsmonoidal category. We then apply 2categorical techniques, already known for term and term graph rewriting [29, 7], recasting in this framework the...