Results 1 
5 of
5
Gaussian processes for ordinal regression
 Journal of Machine Learning Research
, 2004
"... We present a probabilistic kernel approach to ordinal regression based on Gaussian processes. A threshold model that generalizes the probit function is used as the likelihood function for ordinal variables. Two inference techniques, based on the Laplace approximation and the expectation propagation ..."
Abstract

Cited by 117 (4 self)
 Add to MetaCart
We present a probabilistic kernel approach to ordinal regression based on Gaussian processes. A threshold model that generalizes the probit function is used as the likelihood function for ordinal variables. Two inference techniques, based on the Laplace approximation and the expectation propagation algorithm respectively, are derived for hyperparameter learning and model selection. We compare these two Gaussian process approaches with a previous ordinal regression method based on support vector machines on some benchmark and realworld data sets, including applications of ordinal regression to collaborative filtering and gene expression analysis. Experimental results on these data sets verify the usefulness of our approach.
New approaches to support vector ordinal regression
 In ICML ’05: Proceedings of the 22nd international conference on Machine Learning
, 2005
"... In this paper, we propose two new support vector approaches for ordinal regression, which optimize multiple thresholds to define parallel discriminant hyperplanes for the ordinal scales. Both approaches guarantee that the thresholds are properly ordered at the optimal solution. The size of these opt ..."
Abstract

Cited by 76 (3 self)
 Add to MetaCart
In this paper, we propose two new support vector approaches for ordinal regression, which optimize multiple thresholds to define parallel discriminant hyperplanes for the ordinal scales. Both approaches guarantee that the thresholds are properly ordered at the optimal solution. The size of these optimization problems is linear in the number of training samples. The SMO algorithm is adapted for the resulting optimization problems; it is extremely easy to implement and scales efficiently as a quadratic function of the number of examples. The results of numerical experiments on benchmark datasets verify the usefulness of these approaches. 1.
Support vector ordinal regression
 Neural Computation
, 2007
"... In this paper, we propose two new support vector approaches for ordinal regression, which optimize multiple thresholds to define parallel discriminant hyperplanes for the ordinal scales. Both approaches guarantee that the thresholds are properly ordered at the optimal solution. The size of these opt ..."
Abstract

Cited by 39 (2 self)
 Add to MetaCart
In this paper, we propose two new support vector approaches for ordinal regression, which optimize multiple thresholds to define parallel discriminant hyperplanes for the ordinal scales. Both approaches guarantee that the thresholds are properly ordered at the optimal solution. The size of these optimization problems is linear in the number of training samples. The SMO algorithm is adapted for the resulting optimization problems; it is extremely easy to implement and scales efficiently as a quadratic function of the number of examples. The results of numerical experiments on some benchmark and realworld data sets, including applications of ordinal regression to information retrieval and collaborative filtering, verify the usefulness of these approaches. 1
Learning to Rank With Bregman Divergences and Monotone Retargeting
"... This paper introduces a novel approach for learning to rank (LETOR) based on the notion of monotone retargeting. It involves minimizing a divergence between all monotonic increasing transformations of the training scores and a parameterized prediction function. The minimization is over the transform ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
(Show Context)
This paper introduces a novel approach for learning to rank (LETOR) based on the notion of monotone retargeting. It involves minimizing a divergence between all monotonic increasing transformations of the training scores and a parameterized prediction function. The minimization is over the transformations as well as over the parameters. MR is applied to Bregman divergences, a large class of “distance like ” functions that were recently shown to be the unique class that is statistically consistent with the normalized discounted gain (NDCG) criterion [19]. The algorithm uses alternating projection style updates, in which one set of simultaneous projections can be computed independent of the Bregman divergence and the other reduces to parameter estimation of a generalized linear model. This results in an easily implemented, efficiently parallelizable algorithm for the LETOR task that enjoys global optimum guarantees under mild conditions. We present empirical results on benchmark datasets showing that this approach can outperform the state of the art NDCG consistent techniques. 1
Editor: Unknown
"... We present a probabilistic kernel approach to ordinal regression based on Gaussian processes. A threshold model that generalizes the probit function is used as the likelihood function for ordinal variables. Two inference techniques, based on the Laplace approximation and the expectation propagation ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We present a probabilistic kernel approach to ordinal regression based on Gaussian processes. A threshold model that generalizes the probit function is used as the likelihood function for ordinal variables. Two inference techniques, based on the Laplace approximation and the expectation propagation algorithm respectively, are derived for hyperparameter learning and model selection. We compare these two Gaussian process approaches with a previous ordinal regression method based on support vector machines on some benchmark and realworld data sets, including applications of ordinal regression to collaborative filtering and gene expression analysis. Experimental results on these data sets verify the usefulness of our approach.