Results 1  10
of
35
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard.
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 475 (67 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae w.r.t the vertex set). Our graph property testing algorithms are probabilistic and make assertions which are correct with high probability, utilizing only poly(1=ffl) edgequeries into the graph, where ffl is the distance parameter. Moreover, the property testing algorithms can be used to efficiently (i.e., in time linear in the number of vertices) construct partitions of the graph which corre...
A Parallel Repetition Theorem
 SIAM Journal on Computing
, 1998
"... We show that a parallel repetition of any twoprover oneround proof system (MIP(2, 1)) decreases the probability of error at an exponential rate. No constructive bound was previously known. The constant in the exponent (in our analysis) depends only on the original probability of error and on the t ..."
Abstract

Cited by 362 (9 self)
 Add to MetaCart
(Show Context)
We show that a parallel repetition of any twoprover oneround proof system (MIP(2, 1)) decreases the probability of error at an exponential rate. No constructive bound was previously known. The constant in the exponent (in our analysis) depends only on the original probability of error and on the total number of possible answers of the two provers. The dependency on the total number of possible answers is logarithmic, which was recently proved to be almost the best possible [U. Feige and O. Verbitsky, Proc. 11th Annual IEEE Conference on Computational Complexity, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 7076].
A SubConstant ErrorProbability LowDegree Test, and a SubConstant ErrorProbability PCP Characterization of NP
 IN PROC. 29TH ACM SYMP. ON THEORY OF COMPUTING, 475484. EL PASO
, 1997
"... We introduce a new lowdegreetest, one that uses the restriction of lowdegree polynomials to planes (i.e., affine subspaces of dimension 2), rather than the restriction to lines (i.e., affine subspaces of dimension 1). We prove the new test to be of a very small errorprobability (in particular, ..."
Abstract

Cited by 324 (20 self)
 Add to MetaCart
We introduce a new lowdegreetest, one that uses the restriction of lowdegree polynomials to planes (i.e., affine subspaces of dimension 2), rather than the restriction to lines (i.e., affine subspaces of dimension 1). We prove the new test to be of a very small errorprobability (in particular, much smaller than constant). The new test enables us to prove a lowerror characterization of NP in terms of PCP. Specifically, our theorem states that, for any given ffl ? 0, membership in any NP language can be verified with O(1) accesses, each reading logarithmic number of bits, and such that the errorprobability is 2 \Gamma log 1\Gammaffl n . Our results are in fact stronger, as stated below. One application of the new characterization of NP is that approximating SETCOVER to within a logarithmic factors is NPhard. Previous analysis for lowdegreetests, as well as previous characterizations of NP in terms of PCP, have managed to achieve, with constant number of accesses, error...
Free Bits, PCPs and NonApproximability  Towards Tight Results
, 1996
"... This paper continues the investigation of the connection between proof systems and approximation. The emphasis is on proving tight nonapproximability results via consideration of measures like the "free bit complexity" and the "amortized free bit complexity" of proof systems. ..."
Abstract

Cited by 212 (39 self)
 Add to MetaCart
This paper continues the investigation of the connection between proof systems and approximation. The emphasis is on proving tight nonapproximability results via consideration of measures like the "free bit complexity" and the "amortized free bit complexity" of proof systems.
Zero Knowledge and the Chromatic Number
 Journal of Computer and System Sciences
, 1996
"... We present a new technique, inspired by zeroknowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max3coloring and max3sat, showing that it is hard to approximate the chromatic number wi ..."
Abstract

Cited by 196 (6 self)
 Add to MetaCart
(Show Context)
We present a new technique, inspired by zeroknowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max3coloring and max3sat, showing that it is hard to approximate the chromatic number within \Omega\Gamma N ffi ), for some ffi ? 0. We then apply our technique in conjunction with the probabilistically checkable proofs of Hastad, and show that it is hard to approximate the chromatic number to within\Omega\Gamma N 1\Gammaffl ) for any ffl ? 0, assuming NP 6` ZPP. Here, ZPP denotes the class of languages decidable by a random expected polynomialtime algorithm that makes no errors. Our result matches (up to low order terms) the known gap for approximating the size of the largest independent set. Previous O(N ffi ) gaps for approximating the chromatic number (such as those by Lund and Yannakakis, and by Furer) did not match the gap for independent set, and do not extend...
Property Testing in Bounded Degree Graphs
 Algorithmica
, 1997
"... We further develop the study of testing graph properties as initiated by Goldreich, Goldwasser and Ron. Whereas they view graphs as represented by their adjacency matrix and measure distance between graphs as a fraction of all possible vertex pairs, we view graphs as represented by boundedlength in ..."
Abstract

Cited by 124 (36 self)
 Add to MetaCart
We further develop the study of testing graph properties as initiated by Goldreich, Goldwasser and Ron. Whereas they view graphs as represented by their adjacency matrix and measure distance between graphs as a fraction of all possible vertex pairs, we view graphs as represented by boundedlength incidence lists and measure distance between graphs as a fraction of the maximum possible number of edges. Thus, while the previous model is most appropriate for the study of dense graphs, our model is most appropriate for the study of boundeddegree graphs. In particular, we present randomized algorithms for testing whether an unknown boundeddegree graph is connected, kconnected (for k ? 1), planar, etc. Our algorithms work in time polynomial in 1=ffl, always accept the graph when it has the tested property, and reject with high probability if the graph is fflaway from having the property. For example, the 2Connectivity algorithm rejects (w.h.p.) any Nvertex ddegree graph for which more ...
Property Testing
 Handbook of Randomized Computing, Vol. II
, 2000
"... this technical aspect (as in the boundeddegree model the closest graph having the property must have at most dN edges and degree bound d as well). ..."
Abstract

Cited by 75 (11 self)
 Add to MetaCart
this technical aspect (as in the boundeddegree model the closest graph having the property must have at most dN edges and degree bound d as well).
Improved Inapproximability Results for MaxClique, Chromatic Number and Approximate Graph Coloring
"... In this paper, we present improved inapproximability results for three problems: the problem of finding the maximum clique size in a graph, the problem of finding the chromatic number of a graph, and the problem of coloring a graph with a small chromatic number with a small numberof colors. H*ast ..."
Abstract

Cited by 72 (8 self)
 Add to MetaCart
(Show Context)
In this paper, we present improved inapproximability results for three problems: the problem of finding the maximum clique size in a graph, the problem of finding the chromatic number of a graph, and the problem of coloring a graph with a small chromatic number with a small numberof colors. H*astad's celebrated result [13] shows that the maximumclique size in a graph with n vertices is inapproximable inpolynomial time within a factor n1ffl for arbitrarily smallconstant ffl> 0 unless NP=ZPP. In this paper, we aimat getting the best subconstant value of ffl in H*astad's result. We prove that clique size is inapproximable within a factor n2(log n)1fl (corresponding to ffl = 1(log n)fl) for some constant fl> 0 unless NP ` ZPTIME(2(log n) O(1)). This improves the previous best inapproximability factor of
Testing Monotonicity
, 1999
"... We present a (randomized) test for monotonicity of Boolean functions. Namely, given the ability to query an unknown function f : f0; 1g 7! f0; 1g at arguments of its choice, the test always accepts a monotone f , and rejects f with high probability if it is fflfar from being monotone (i.e., e ..."
Abstract

Cited by 72 (13 self)
 Add to MetaCart
(Show Context)
We present a (randomized) test for monotonicity of Boolean functions. Namely, given the ability to query an unknown function f : f0; 1g 7! f0; 1g at arguments of its choice, the test always accepts a monotone f , and rejects f with high probability if it is fflfar from being monotone (i.e., every monotone function differs from f on more than an ffl fraction of the domain).