Results 1  10
of
553
Topology Control in Wireless Ad Hoc and Sensor Networks
 ACM Computing Surveys
, 2005
"... Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of thi ..."
Abstract

Cited by 304 (4 self)
 Add to MetaCart
Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of this technique is to control the topology of the graph representing the communication links between network nodes with the purpose of maintaining some global graph property (e.g., connectivity), while reducing energy consumption and/or interference that are strictly related to the nodes ’ transmitting range. In this article, we state several problems related to topology control in wireless ad hoc and sensor networks, and we survey stateoftheart solutions which have been proposed to tackle them. We also outline several directions for further research which we hope will motivate researchers to undertake additional studies in this field.
A survey of energy efficient network protocols for wireless networks
 Wireless Networks
, 2001
"... Abstract. Wireless networking has witnessed an explosion of interest from consumers in recent years for its applications in mobile and personal communications. As wireless networks become an integral component of the modern communication infrastructure, energy efficiency will be an important design ..."
Abstract

Cited by 278 (1 self)
 Add to MetaCart
(Show Context)
Abstract. Wireless networking has witnessed an explosion of interest from consumers in recent years for its applications in mobile and personal communications. As wireless networks become an integral component of the modern communication infrastructure, energy efficiency will be an important design consideration due to the limited battery life of mobile terminals. Power conservation techniques are commonly used in the hardware design of such systems. Since the network interface is a significant consumer of power, considerable research has been devoted to lowpower design of the entire network protocol stack of wireless networks in an effort to enhance energy efficiency. This paper presents a comprehensive summary of recent work addressing energy efficient and lowpower design within all layers of the wireless network protocol stack.
Data Gathering Algorithms in Sensor Networks Using Energy Metrics
 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
, 2002
"... Sensor webs consisting of nodes with limited battery power and wireless communications are deployed to collect useful information from the field. Gathering sensed information in an energy efficient manner is critical to operating the sensor network for a long period of time. In [12], a data collecti ..."
Abstract

Cited by 226 (2 self)
 Add to MetaCart
Sensor webs consisting of nodes with limited battery power and wireless communications are deployed to collect useful information from the field. Gathering sensed information in an energy efficient manner is critical to operating the sensor network for a long period of time. In [12], a data collection problem is defined where, in a round of communication, each sensor node has a packet to be sent to the distant base station. There is some fixed amount of energy cost in the electronics when transmitting or receiving a packet and a variable cost when transmitting a packet which depends on the distance of transmission. If each node transmits its sensed data directly to the base station, then it will deplete its power quickly. The LEACH protocol presented in [12] is an elegant solution where clusters are formed to fuse data before transmitting to the base station. By randomizing the clusterheads chosen to transmit to the base station, LEACH achieves a factor of 8 improvement compared to direct transmissions, as measured in terms of when nodes die. An improved version of LEACH, called LEACHC, is presented in [14], where the central base station performs the clustering to improve energy efficiency. In this paper, we present an improved scheme, called PEGASIS (PowerEfficient GAthering in Sensor Information Systems), which is a nearoptimal chainbased protocol that minimizes energy. In PEGASIS, each node communicates only with a close neighbor and takes turns transmitting to the base station, thus reducing the amount of energy spent per round. Simulation results show that PEGASIS performs better than LEACH by about 100 to 200 percent when 1 percent, 25 percent, 50 percent, and 100 percent of nodes die for different network sizes and topologies. For many applications, in addition to minimizing energy, it is also important to consider the delay incurred in gathering sensed data. We capture this with the energy delay metric and
A Power Control MAC Protocol for Ad Hoc Networks
, 2002
"... This paper presents a power control MAC protocol that allows nodes to vary transmit power level on a perpacket basis. Several researchers have proposed simple modifications of IEEE 802.11 to incorporate power control. The main idea of these power control schemes is to use different power levels for ..."
Abstract

Cited by 210 (1 self)
 Add to MetaCart
(Show Context)
This paper presents a power control MAC protocol that allows nodes to vary transmit power level on a perpacket basis. Several researchers have proposed simple modifications of IEEE 802.11 to incorporate power control. The main idea of these power control schemes is to use different power levels for RTSCTS and DATAACK. Specifically, maximum transmit power is used for RTSCTS, and the minimum required transmit power is used for DATAACK transmissions in order to save energy. However, we show that these schemes can degrade network throughput and can result in higher energy consumption than when using IEEE 802.11 without power control. We propose a power control protocol which does not degrade throughput and yields energy saving.
Minimumenergy broadcast in allwireless networks: Npcompleteness and distribution
 In Proc. of ACM MobiCom
, 2002
"... In allwireless networks a crucial problem is to minimize energy consumption, as in most cases the nodes are batteryoperated. We focus on the problem of poweroptimal broadcast, for which it is well known that the broadcast nature of the radio transmission can be exploited to optimize energy consump ..."
Abstract

Cited by 177 (2 self)
 Add to MetaCart
(Show Context)
In allwireless networks a crucial problem is to minimize energy consumption, as in most cases the nodes are batteryoperated. We focus on the problem of poweroptimal broadcast, for which it is well known that the broadcast nature of the radio transmission can be exploited to optimize energy consumption. Several authors have conjectured that the problem of poweroptimal broadcast is NPcomplete. We provide here a formal proof, both for the general case and for the geometric one; in the former case, the network topology is represented by a generic graph with arbitrary weights, whereas in the latter a Euclidean distance is considered. We then describe a new heuristic, Embedded Wireless Multicast Advantage. We show that it compares well with other proposals and we explain how it can be distributed. Categories and Subject Descriptors
Dominating sets and neighbor eliminationbased broadcasting algorithms in wireless networks
 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
, 2002
"... In a multihop wireless network, each node has a transmission radius and is able to send a message to all of its neighbors that are located within the radius. In a broadcasting task, a source node sends the same message to all the nodes in the network. In this paper, we propose to significantly redu ..."
Abstract

Cited by 174 (15 self)
 Add to MetaCart
(Show Context)
In a multihop wireless network, each node has a transmission radius and is able to send a message to all of its neighbors that are located within the radius. In a broadcasting task, a source node sends the same message to all the nodes in the network. In this paper, we propose to significantly reduce or eliminate the communication overhead of a broadcasting task by applying the concept of localized dominating sets. Their maintenance does not require any communication overhead in addition to maintaining positions of neighboring nodes. Retransmissions by only internal nodes in a dominating set is sufficient for reliable broadcasting. Existing dominating sets are improved by using node degrees instead of their ids as primary keys. We also propose to eliminate neighbors that already received the message and rebroadcast only if the list of neighbors that might need the message is nonempty. A retransmission after negative acknowledgements scheme is also described. The important features of proposed algorithms are their reliability �reaching all nodes in the absence of message collisions), significant rebroadcast savings, and their localized and parameterless behavior. The reduction in communication overhead for broadcasting task is measured experimentally. Dominating sets based broadcasting, enhanced by neighbor elimination scheme and highest degree key, provides reliable broadcast with 53 percent of node retransmissions �on random unit graphs with 100 nodes) for all average degrees d. Critical d is around 4, with 48 percent for 3, 40 percent for d 10, and 20 percent for d 25. The proposed methods are better than existing ones in all considered aspects: reliability, rebroadcast savings, and maintenance communication overhead. In particular, the cluster structure is inefficient for broadcasting because of considerable communication overhead for maintaining the structure and is also inferior in terms of rebroadcast savings.
Resilient Network Coding in the Presence of Byzantine Adversaries
"... Network coding substantially increases network throughput. But since it involves mixing of information inside the network, a single corrupted packet generated by a malicious node can end up contaminating all the information reaching a destination, preventing decoding. This paper introduces distribu ..."
Abstract

Cited by 169 (32 self)
 Add to MetaCart
(Show Context)
Network coding substantially increases network throughput. But since it involves mixing of information inside the network, a single corrupted packet generated by a malicious node can end up contaminating all the information reaching a destination, preventing decoding. This paper introduces distributed polynomialtime rateoptimal network codes that work in the presence of Byzantine nodes. We present algorithms that target adversaries with different attacking capabilities. When the adversary can eavesdrop on all links and jam zO links, our first algorithm achieves a rate of C − 2zO, where C is the network capacity. In contrast, when the adversary has limited eavesdropping capabilities, we provide algorithms that achieve the higher rate of C − zO. Our algorithms attain the optimal rate given the strength of the adversary. They are informationtheoretically secure. They operate in a distributed manner, assume no knowledge of the topology, and can be designed and implemented in polynomialtime. Furthermore, only the source and destination need to be modified; nonmalicious nodes inside the network are oblivious to the presence of adversaries and implement a classical distributed network code. Finally, our algorithms work over wired and wireless networks.
MinimumCost Multicast over Coded Packet Networks
 IEEE TRANS. ON INF. THE
, 2006
"... We consider the problem of establishing minimumcost multicast connections over coded packet networks, i.e., packet networks where the contents of outgoing packets are arbitrary, causal functions of the contents of received packets. We consider both wireline and wireless packet networks as well as b ..."
Abstract

Cited by 164 (28 self)
 Add to MetaCart
(Show Context)
We consider the problem of establishing minimumcost multicast connections over coded packet networks, i.e., packet networks where the contents of outgoing packets are arbitrary, causal functions of the contents of received packets. We consider both wireline and wireless packet networks as well as both static multicast (where membership of the multicast group remains constant for the duration of the connection) and dynamic multicast (where membership of the multicast group changes in time, with nodes joining and leaving the group). For static multicast, we reduce the problem to a polynomialtime solvable optimization problem, ... and we present decentralized algorithms for solving it. These algorithms, when coupled with existing decentralized schemes for constructing network codes, yield a fully decentralized approach for achieving minimumcost multicast. By contrast, establishing minimumcost static multicast connections over routed packet networks is a very difficult problem even using centralized computation, except in the special cases of unicast and broadcast connections. For dynamic multicast, we reduce the problem to a dynamic programming problem and apply the theory of dynamic programming to suggest how it may be solved.
On Calculating PowerAware Connected Dominating Sets for Efficient Routing in Ad Hoc Wireless Networks
 IEEE/KICS JOURNAL OF COMMUNICATIONS AND NETWORKS
, 2002
"... Efficient routing among a set of mobile hosts (also called nodes) is one of the most important functions in ad hoc wireless networks. Routing based on a connected dominating set is a promising approach, where the searching space for a route is reduced to nodes in the set. A set is dominating if al ..."
Abstract

Cited by 146 (11 self)
 Add to MetaCart
(Show Context)
Efficient routing among a set of mobile hosts (also called nodes) is one of the most important functions in ad hoc wireless networks. Routing based on a connected dominating set is a promising approach, where the searching space for a route is reduced to nodes in the set. A set is dominating if all the nodes in the system are either in the set or neighbors of nodes in the set. Wu and Li [1] proposed a simple and efficient distributed algorithm for calculating connected dominating set in ad hoc wireless networks, where connections of nodes are determined by geographical distances of nodes. In general, nodes in the connected dominating set consume more energy in order to handle various bypass traffics than nodes outside the set. To prolong the life span of each node, and hence, the network by balancing the energy consumption in the network, nodes should be alternated in being chosen to form a connected dominating set. In this paper, we propose a method of calculating poweraware connected dominating set. Our simulation results show that the proposed approach outperforms several existing approaches in terms of life span of the network.
Minimumenergy broadcast routing in static ad hoc wireless networks
, 2001
"... Abstract  Energy conservation is a critical issue in ad hoc wireless networks for node and network life, as the nodes are powered by batteries only. One major approach for energy conservation is to route a communication session along the routes which requires the lowest total energy consumption. Th ..."
Abstract

Cited by 138 (9 self)
 Add to MetaCart
(Show Context)
Abstract  Energy conservation is a critical issue in ad hoc wireless networks for node and network life, as the nodes are powered by batteries only. One major approach for energy conservation is to route a communication session along the routes which requires the lowest total energy consumption. This optimization problem is referred to as minimumenergy routing. While minimumenergy unicast routing can be solved in polynomial time by shortestpath algorithms, it remains open whether minimumenergy broadcast routing can be solved in polynomial time, despite of the NPhardness of its general graph version. Recently three greedy heuristics were proposed in [8]: MST (minimum spanning tree), SPT (shortestpath tree), and BIP (broadcasting incremental power). They have been evaluated through simulations in [8], but little is known about their analytical performance. The main contribution of this paper is the quantitative characterization of their performances in terms of approximation ratios. By exploring geometric structures of Euclidean MSTs, we havebeen able to prove that the approximation ratio of MST is between 6 and 12, and the approximation ratio of BIP is between 13 and 12. On the 3 other hand, the approximation ratio of SPT is shown to be at least n,wherenis the number of receiving nodes. To 2 our best knowledge, these are the rst analytical results for minimumenergy broadcasting. I.