Results 1 - 10
of
272
Image Super-Resolution via Sparse Representation
"... This paper presents a new approach to singleimage superresolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by th ..."
Abstract
-
Cited by 194 (9 self)
- Add to MetaCart
This paper presents a new approach to singleimage superresolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low resolution and high resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches which simply sample a large amount of image patch pairs, reducing the computation cost substantially. The effectiveness of such a sparsity prior is demonstrated for general image super-resolution and also for the special case of face hallucination. In both cases, our algorithm can generate high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods, but with faster processing speed.
Kernel regression for image processing and reconstruction
- IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2007
"... In this paper, we make contact with the field of nonparametric statistics and present a development and generalization of tools and results for use in image processing and reconstruction. In particular, we adapt and expand kernel regression ideas for use in image denoising, upscaling, interpolation, ..."
Abstract
-
Cited by 172 (53 self)
- Add to MetaCart
In this paper, we make contact with the field of nonparametric statistics and present a development and generalization of tools and results for use in image processing and reconstruction. In particular, we adapt and expand kernel regression ideas for use in image denoising, upscaling, interpolation, fusion, and more. Furthermore, we establish key relationships with some popular existing methods and show how several of these algorithms, including the recently popularized bilateral filter, are special cases of the proposed framework. The resulting algorithms and analyses are amply illustrated with practical examples.
Super-Resolution from a Single Image
"... Methods for super-resolution can be broadly classified into two families of methods: (i) The classical multi-image super-resolution (combining images obtained at subpixel misalignments), and (ii) Example-Based super-resolution (learning correspondence between low and high resolution image patches fr ..."
Abstract
-
Cited by 139 (5 self)
- Add to MetaCart
(Show Context)
Methods for super-resolution can be broadly classified into two families of methods: (i) The classical multi-image super-resolution (combining images obtained at subpixel misalignments), and (ii) Example-Based super-resolution (learning correspondence between low and high resolution image patches from a database). In this paper we propose a unified framework for combining these two families of methods. We further show how this combined approach can be applied to obtain super resolution from as little as a single image (with no database or prior examples). Our approach is based on the observation that patches in a natural image tend to redundantly recur many times inside the image, both within the same scale, as well as across different scales. Recurrence of patches within the same image scale (at subpixel misalignments) gives rise to the classical super-resolution, whereas recurrence of patches across different scales of the same image gives rise to example-based super-resolution. Our approach attempts to recover at each pixel its best possible resolution increase based on its patch redundancy within and across scales. 1.
Image superresolution as sparse representation of raw image patches
, 2008
"... This paper addresses the problem of generating a superresolution (SR) image from a single low-resolution input image. We approach this problem from the perspective of compressed sensing. The low-resolution image is viewed as downsampled version of a high-resolution image, whose patches are assumed t ..."
Abstract
-
Cited by 135 (19 self)
- Add to MetaCart
(Show Context)
This paper addresses the problem of generating a superresolution (SR) image from a single low-resolution input image. We approach this problem from the perspective of compressed sensing. The low-resolution image is viewed as downsampled version of a high-resolution image, whose patches are assumed to have a sparse representation with respect to an over-complete dictionary of prototype signalatoms. The principle of compressed sensing ensures that under mild conditions, the sparse representation can be correctly recovered from the downsampled signal. We will demonstrate the effectiveness of sparsity as a prior for regularizing the otherwise ill-posed super-resolution problem. We further show that a small set of randomly chosen raw patches from training images of similar statistical nature to the input image generally serve as a good dictionary, in the sense that the computed representation is sparse and the recovered high-resolution image is competitive or even superior in quality to images produced by other SR methods.
A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution
, 2006
"... Super-resolution algorithms reconstruct a high-resolution image from a set of low-resolution images of a scene. Precise alignment of the input images is an essential part of such algorithms. If the low-resolution images are undersampled and have aliasing artifacts, the performance of standard regist ..."
Abstract
-
Cited by 104 (9 self)
- Add to MetaCart
Super-resolution algorithms reconstruct a high-resolution image from a set of low-resolution images of a scene. Precise alignment of the input images is an essential part of such algorithms. If the low-resolution images are undersampled and have aliasing artifacts, the performance of standard registration algorithms decreases. We propose a frequency domain technique to precisely register a set of aliased images, based on their low-frequency, aliasing-free part. A high-resolution image is then reconstructed using cubic interpolation. Our algorithm is compared to other algorithms in simulations and practical experiments using real aliased images. Both show very good visual results and prove the attractivity of our approach in the case of aliased input images. A possible application is to digital cameras where a set of rapidly acquired images can be used to recover a higher-resolution final image.
Generalizing the non-local-means to super-resolution reconstruction
- IN IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2009
"... Super-resolution reconstruction proposes a fusion of several low-quality images into one higher quality result with better optical resolution. Classic super-resolution techniques strongly rely on the availability of accurate motion estimation for this fusion task. When the motion is estimated inacc ..."
Abstract
-
Cited by 81 (4 self)
- Add to MetaCart
(Show Context)
Super-resolution reconstruction proposes a fusion of several low-quality images into one higher quality result with better optical resolution. Classic super-resolution techniques strongly rely on the availability of accurate motion estimation for this fusion task. When the motion is estimated inaccurately, as often happens for nonglobal motion fields, annoying artifacts appear in the super-resolved outcome. Encouraged by recent developments on the video denoising problem, where state-of-the-art algorithms are formed with no explicit motion estimation, we seek a super-resolution algorithm of similar nature that will allow processing sequences with general motion patterns. In this paper, we base our solution on the Nonlocal-Means (NLM) algorithm. We show how this denoising method is generalized to become a relatively simple super-resolution algorithm with no explicit motion estimation. Results on several test movies show that the proposed method is very successful in providing super-resolution on general sequences.
Multi-frame demosaicing and super-resolution of color images
- IEEE Trans. on Image Processing
, 2006
"... In the last two decades, two related categories of problems have been studied independently in the image restoration literature: super-resolution and demosaicing. A closer look at these problems reveals the relation between them, and as conventional color digital cameras suffer from both low-spatial ..."
Abstract
-
Cited by 53 (8 self)
- Add to MetaCart
(Show Context)
In the last two decades, two related categories of problems have been studied independently in the image restoration literature: super-resolution and demosaicing. A closer look at these problems reveals the relation between them, and as conventional color digital cameras suffer from both low-spatial resolution and color-filtering, it is reasonable to address them in a unified context. In this paper, we propose a fast and robust hybrid method of super-resolution and demosaicing, based on a MAP estimation technique by minimizing a multi-term cost function. The L 1 norm is used for measuring the difference between the projected estimate of the high-resolution image and each low-resolution image, removing outliers in the data and errors due to possibly inaccurate motion estimation. Bilateral regularization is used for spatially regularizing the luminance component, resulting in sharp edges and forcing interpolation along the edges and not across them. Simultaneously, Tikhonov regularization is used to smooth the chrominance components. Finally, an additional regularization term is used to force similar edge location and orientation in different color channels. We show that the minimization of the total cost function is relatively easy and fast. Experimental results on synthetic and real data sets confirm the effectiveness of
Image and Video Upscaling from Local Self-Examples
"... We propose a new high-quality and efficient single-image upscaling technique that extends existing example-based super-resolution frameworks. In our approach we do not rely on an external example database or use the whole input image as a source for example patches. Instead, we follow a local self-s ..."
Abstract
-
Cited by 39 (0 self)
- Add to MetaCart
We propose a new high-quality and efficient single-image upscaling technique that extends existing example-based super-resolution frameworks. In our approach we do not rely on an external example database or use the whole input image as a source for example patches. Instead, we follow a local self-similarity assumption on natural images and extract patches from extremely localized regions in the input image. This allows us to reduce considerably the nearest-patch search time without compromising quality in most images. Tests, that we perform and report, show that the local-self similarity assumption holds better for small scaling factors where there are more example patches of greater relevance. We implement these small scalings using dedicated novel non-dyadic filter banks, that we derive based on principles that model the upscaling process. Moreover, the new filters are nearly-biorthogonal and hence produce high-resolution images that are highly consistent with the input image without solving implicit back-projection equations. The local and explicit nature of our algorithm makes it simple, efficient and allows a trivial parallel implementation on a GPU. We demonstrate the new method ability to produce high-quality resolution enhancement, its application to video sequences with no algorithmic modification, and its efficiency to perform real-time enhancement of lowresolution video standard into recent high-definition formats.
Robust fusion of irregularly sampled data using adaptive normalized convolution
- EURASIP Journal on Applied Signal Processing
, 2006
"... We present a novel algorithm for image fusion from irregularly sampled data. The method is based on the framework of normalized convolution (NC), in which the local signal is approximated through a projection onto a subspace. The use of polynomial basis functions in this paper makes NC equivalent to ..."
Abstract
-
Cited by 38 (5 self)
- Add to MetaCart
(Show Context)
We present a novel algorithm for image fusion from irregularly sampled data. The method is based on the framework of normalized convolution (NC), in which the local signal is approximated through a projection onto a subspace. The use of polynomial basis functions in this paper makes NC equivalent to a local Taylor series expansion. Unlike the traditional framework, however, the window function of adaptive NC is adapted to local linear structures. This leads to more samples of the same modality being gathered for the analysis, which in turn improves signal-to-noise ratio and reduces diffusion across discontinuities. A robust signal certainty is also adapted to the sample intensities to minimize the influence of outliers. Excellent fusion capability of adaptive NC is demonstrated through an application of super-resolution image reconstruction. Copyright © 2006 Hindawi Publishing Corporation. All rights reserved. 1.
Soft edge smoothness prior for alpha channel super resolution
- in CVPR
, 2007
"... Effective image prior is necessary for image super resolution, due to its severely under-determined nature. Although the edge smoothness prior can be effective, it is generally difficult to have analytical forms to evaluate the edge smoothness, especially for soft edges that exhibit gradual intensit ..."
Abstract
-
Cited by 36 (6 self)
- Add to MetaCart
(Show Context)
Effective image prior is necessary for image super resolution, due to its severely under-determined nature. Although the edge smoothness prior can be effective, it is generally difficult to have analytical forms to evaluate the edge smoothness, especially for soft edges that exhibit gradual intensity transitions. This paper finds the connection between the soft edge smoothness and a soft cut metric on an image grid by generalizing the Geocuts method [5], and proves that the soft edge smoothness measure approximates the average length of all level lines in an intensity image. This new finding not only leads to an analytical characterization of the soft edge smoothness prior, but also gives an intuitive geometric explanation. Regularizing the super resolution problem by this new form of prior can simultaneously minimize the length of all level lines, and thus resulting in visually appealing results. In addition, this paper presents a novel combination of this soft edge smoothness prior and the alpha matting technique for color image super resolution, by normalizing edge segments with their alpha channel description, to achieve a unified treatment of edges with different contrast and scale. 1.