Results 1  10
of
31
Meridian: A Lightweight Network Location Service without Virtual Coordinates
 In SIGCOMM
, 2005
"... This paper introduces a lightweight, scalable and accurate framework, called Meridian, for performing node selection based on network location. The framework consists of an overlay network structured around multiresolution rings, query routing with direct measurements, and gossip protocols for diss ..."
Abstract

Cited by 190 (8 self)
 Add to MetaCart
(Show Context)
This paper introduces a lightweight, scalable and accurate framework, called Meridian, for performing node selection based on network location. The framework consists of an overlay network structured around multiresolution rings, query routing with direct measurements, and gossip protocols for dissemination. We show how this framework can be used to address three commonly encountered problems, namely, closest node discovery, central leader election, and locating nodes that satisfy target latency constraints in largescale distributed systems without having to compute absolute coordinates. We show analytically that the framework is scalable with logarithmic convergence when Internet latencies are modeled as a growthconstrained metric, a lowdimensional Euclidean metric, or a metric of low doubling dimension. Large scale simulations, based on latency measurements from 6.25 million nodepairs as well as an implementation deployed on PlanetLab show that the framework is accurate and effective.
Lighthouses for Scalable Distributed Location
, 2003
"... This paper introduces Lighthouse, a scalable location mechanism for widearea networks. Unlike existing vectorbased systems such as GNP, we show how networklocation can be established without using a xed set of reference points. This lets us avoid the communication bottlenecks and singlepoin ..."
Abstract

Cited by 160 (8 self)
 Add to MetaCart
(Show Context)
This paper introduces Lighthouse, a scalable location mechanism for widearea networks. Unlike existing vectorbased systems such as GNP, we show how networklocation can be established without using a xed set of reference points. This lets us avoid the communication bottlenecks and singlepointsoffailure that otherwise limit the practicality of such systems.
A Network Positioning System for the Internet
 PROCEEDINGS OF THE 4TH SYMPOSIUM ON INTERNET TECHNOLOGIES AND SYSTEMS; USENIX
, 2004
"... Network positioning has recently been demonstrated to be a viable concept to represent the network distance relationships among Internet end hosts. Several subsequent studies have examined the potential benefits of using network position in applications, and proposed alternative network positioning ..."
Abstract

Cited by 123 (1 self)
 Add to MetaCart
Network positioning has recently been demonstrated to be a viable concept to represent the network distance relationships among Internet end hosts. Several subsequent studies have examined the potential benefits of using network position in applications, and proposed alternative network positioning algorithms. In this paper, we study the problem of designing and building a network positioning system (NPS). We identify several key system building issues such as the consistency, adaptivity and stability of host network positions over time. We propose a hierarchical network positioning architecture that maintains consistency while enabling decentralization, a set of adaptive decentralized algorithms to compute and maintain accurate, stable network positions, and finally present a prototype system deployed on PlanetLab nodes that can be used by a variety of applications. We believe our system is a viable first step to provide a network positioning capability in the Internet.
The Case for Cooperative Networking
, 2002
"... ... CoopNet) where endhosts cooperate to improve network performance perceived by all. In CoopNet, cooperation among peers complements traditional clientserver communication rather than replacing it. We focus on the Web flash crowd problem and argue that CoopNet offers an effective solution. We pr ..."
Abstract

Cited by 113 (3 self)
 Add to MetaCart
... CoopNet) where endhosts cooperate to improve network performance perceived by all. In CoopNet, cooperation among peers complements traditional clientserver communication rather than replacing it. We focus on the Web flash crowd problem and argue that CoopNet offers an effective solution. We present an evaluation of the CoopNet approach using simulations driven by traffic traces gathered at the MSNBC website during the flash crowd that occurred on September 11, 2001.
Triangulation and Embedding using Small Sets of Beacons
, 2008
"... Concurrent with recent theoretical interest in the problem of metric embedding, a growing body of research in the networking community has studied the distance matrix defined by nodetonode latencies in the Internet, resulting in a number of recent approaches that approximately embed this distance ..."
Abstract

Cited by 96 (11 self)
 Add to MetaCart
Concurrent with recent theoretical interest in the problem of metric embedding, a growing body of research in the networking community has studied the distance matrix defined by nodetonode latencies in the Internet, resulting in a number of recent approaches that approximately embed this distance matrix into lowdimensional Euclidean space. There is a fundamental distinction, however, between the theoretical approaches to the embedding problem and this recent Internetrelated work: in addition to computational limitations, Internet measurement algorithms operate under the constraint that it is only feasible to measure distances for a linear (or nearlinear) number of node pairs, and typically in a highly structured way. Indeed, the most common framework for Internet measurements of this type is a beaconbased approach: one chooses uniformly at random a constant number of nodes (‘beacons’) in the network, each node measures its distance to all beacons, and one then has access to only these measurements for the remainder of the algorithm. Moreover, beaconbased algorithms are often designed not for embedding but for the more basic problem of triangulation, in which one uses the triangle inequality to infer the distances that have not been measured. Here we give algorithms with provable performance guarantees for beaconbased triangulation and
Distance Estimation and Object Location via Rings of Neighbors
 In 24 th Annual ACM Symposium on Principles of Distributed Computing (PODC
, 2005
"... We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: lowstretch routing schemes [47], distance labeling [24], searchable small worlds [30], and triangulationbased distance estimation [33]. Fo ..."
Abstract

Cited by 77 (7 self)
 Add to MetaCart
We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: lowstretch routing schemes [47], distance labeling [24], searchable small worlds [30], and triangulationbased distance estimation [33]. Focusing on metrics of low doubling dimension, we approach these problems with a common technique called rings of neighbors, which refers to a sparse distributed data structure that underlies all our constructions. Apart from improving the previously known bounds for these problems, our contributions include extending Kleinberg’s small world model to doubling metrics, and a short proof of the main result in Chan et al. [14]. Doubling dimension is a notion of dimensionality for general metrics that has recently become a useful algorithmic concept in the theoretical computer science literature. 1
Towards Network Triangle Inequality Violation Aware Distributed Systems
, 2007
"... Many distributed systems rely on neighbor selection mechanisms to create overlay structures that have good network performance. These neighbor selection mechanisms often assume the triangle inequality holds for Internet delays. However, the reality is that the triangle inequality is violated by Inte ..."
Abstract

Cited by 49 (3 self)
 Add to MetaCart
Many distributed systems rely on neighbor selection mechanisms to create overlay structures that have good network performance. These neighbor selection mechanisms often assume the triangle inequality holds for Internet delays. However, the reality is that the triangle inequality is violated by Internet delays. This phenomenon creates a strange environment that confuses neighbor selection mechanisms. This paper investigates the properties of triangle inequality violation (TIV) in Internet delays, the impacts of TIV on representative neighbor selection mechanisms, specifically Vivaldi and Meridian, and avenues to reduce these impacts. We propose a TIV alert mechanism that can inform neighbor selection mechanisms to avoid the pitfalls caused by TIVs and improve their effectiveness.
DHARMA: Distributed Home Agent for Robust Mobile Access
 In IEEE INFOCOM
, 2005
"... Mobile wireless devices have intermittent connectivity, sometimes intentional. This is a problem for conventional Mobile IP, beyond its wellknown routing inefficiencies and deployment issues. DHARMA selects a locationoptimized instance from a distributed set of home agents to minimize routing over ..."
Abstract

Cited by 33 (8 self)
 Add to MetaCart
(Show Context)
Mobile wireless devices have intermittent connectivity, sometimes intentional. This is a problem for conventional Mobile IP, beyond its wellknown routing inefficiencies and deployment issues. DHARMA selects a locationoptimized instance from a distributed set of home agents to minimize routing overheads; set management and optimization are done using the PlanetLab overlay network. DHARMA’s session support overcomes both transitions between home agent instances and intermittent connectivity. Crosslayer information sharing between the session layer and the overlay network are used to exploit multiple wireless links when available. The DHARMA prototype supports intermittently connected legacy TCP applications in a variety of scenarios and is largely portable across host operating systems. Experiments with DHARMA deployed on more than 200 PlanetLab nodes demonstrate routing performance consistently better than that for bestcase Mobile IP. I.
Distributed approaches to triangulation and embedding
 Proceedings of the Sixteenth Annual ACMSIAM Symposium on Discrete Algorithms (SODA 2005
"... A number of recent papers in the networking community study the distance matrix defined by the nodetonode latencies in the Internet and, in particular, provide a number of quite successful distributed approaches that embed this distance into a lowdimensional Euclidean space. In such algorithms i ..."
Abstract

Cited by 29 (9 self)
 Add to MetaCart
(Show Context)
A number of recent papers in the networking community study the distance matrix defined by the nodetonode latencies in the Internet and, in particular, provide a number of quite successful distributed approaches that embed this distance into a lowdimensional Euclidean space. In such algorithms it is feasible to measure distances among only a linear or nearlinear number of node pairs; the rest of the distances are simply not available. Moreover, for applications it is desirable to spread the load evenly among the participating nodes. Indeed, several recent studies use this 'fully distributed ' approach and achieve, empirically, a low distortion for all but a small fraction of node pairs. This is concurrent with the large body of theoretical work on metric embeddings, but there is a fundamental distinction: in the theoretical pproaches tometric embeddings, full and centralized access to the distance matrix is assumed and heavily used. In this paper we present the first fully distributed embedding algorithm with provable distortion guarantees for doubling metrics (which have been proposed as a reasonable abstraction of Internet latencies), thus providing some insight into the empirical success of the recent VivaMi algorithm [5]. The main ingredient of our embedding algorithm is an improved fully distributed algorithm for a more basic problem of triangulation, where the triangle inequality is used to infer the distances that have not been measured; this problem received a considerable attention in the networking community, and has also been studied theoretically in [19]. We use our techniques to extend erelaxed embeddings and triangulations toinfinite metrics and arbitrary measures, and to improve on the approximate distance labeling scheme of Talwar [33]. I
Metric embeddings with relaxed guarantees
 IN PROCEEDINGS OF THE 46TH IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 2005
"... We consider the problem of embedding finite metrics with slack: we seek to produce embeddings with small dimension and distortion while allowing a (small) constant fraction of all distances to be arbitrarily distorted. This definition is motivated by recent research in the networking community, whic ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
We consider the problem of embedding finite metrics with slack: we seek to produce embeddings with small dimension and distortion while allowing a (small) constant fraction of all distances to be arbitrarily distorted. This definition is motivated by recent research in the networking community, which achieved striking empirical success at embedding Internet latencies with low distortion into lowdimensional Euclidean space, provided that some small slack is allowed. Answering an open question of Kleinberg, Slivkins, and Wexler [29], we show that provable guarantees of this type can in fact be achieved in general: any finite metric can be embedded, with constant slack and constant distortion, into constantdimensional Euclidean space. We then show that there exist stronger embeddings into ℓ1 which exhibit