Results 1  10
of
49
Approximation algorithms for combinatorial auctions with complementfree bidders
 In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC
, 2005
"... We exhibit three approximation algorithms for the allocation problem in combinatorial auctions with complement free bidders. The running time of these algorithms is polynomial in the number of items m and in the number of bidders n, even though the “input size ” is exponential in m. The first algori ..."
Abstract

Cited by 133 (25 self)
 Add to MetaCart
(Show Context)
We exhibit three approximation algorithms for the allocation problem in combinatorial auctions with complement free bidders. The running time of these algorithms is polynomial in the number of items m and in the number of bidders n, even though the “input size ” is exponential in m. The first algorithm provides an O(log m) approximation. The second algorithm provides an O ( √ m) approximation in the weaker model of value oracles. This algorithm is also incentive compatible. The third algorithm provides an improved 2approximation for the more restricted case of “XOS bidders”, a class which strictly contains submodular bidders. We also prove lower bounds on the possible approximations achievable for these classes of bidders. These bounds are not tight and we leave the gaps as open problems. 1
Optimal Approximation for the Submodular Welfare Problem in the value oracle model
 STOC'08
, 2008
"... In the Submodular Welfare Problem, m items are to be distributed among n players with utility functions wi: 2 [m] → R+. The utility functions are assumed to be monotone and submodular. Assuming that player i receives a set of items Si, we wish to maximize the total utility Pn i=1 wi(Si). In this pap ..."
Abstract

Cited by 123 (13 self)
 Add to MetaCart
In the Submodular Welfare Problem, m items are to be distributed among n players with utility functions wi: 2 [m] → R+. The utility functions are assumed to be monotone and submodular. Assuming that player i receives a set of items Si, we wish to maximize the total utility Pn i=1 wi(Si). In this paper, we work in the value oracle model where the only access to the utility functions is through a black box returning wi(S) for a given set S. Submodular Welfare is in fact a special case of the more general problem of submodular maximization subject to a matroid constraint: max{f(S) : S ∈ I}, where f is monotone submodular and I is the collection of independent sets in some matroid. For both problems, a greedy algorithm is known to yield a 1/2approximation [21, 16]. In special cases where the matroid is uniform (I = {S: S  ≤ k}) [20] or the submodular function is of a special type [4, 2], a (1 − 1/e)approximation has been achieved and this is optimal for these problems in the value oracle model [22, 6, 15]. A (1 − 1/e)approximation for the general Submodular Welfare Problem has been known only in a stronger demand oracle model [4], where in fact 1 − 1/e can be improved [9]. In this paper, we develop a randomized continuous greedy algorithm which achieves a (1 − 1/e)approximation for the Submodular Welfare Problem in the value oracle model. We also show that the special case of n equal players is approximation resistant, in the sense that the optimal (1 − 1/e)approximation is achieved by a uniformly random solution. Using the pipage rounding technique [1, 2], we obtain a (1 − 1/e)approximation for submodular maximization subject to any matroid constraint. The continuous greedy algorithm has a potential of wider applicability, which we demonstrate on the examples of the Generalized Assignment Problem and the AdWords Assignment Problem.
Truthful randomized mechanisms for combinatorial auctions
 IN STOC
, 2006
"... We design two computationallyefficient incentivecompatible mechanisms for combinatorial auctions with general bidder preferences. Both mechanisms are randomized, and are incentivecompatible in the universal sense. This is in contrast to recent previous work that only addresses the weaker notion o ..."
Abstract

Cited by 105 (17 self)
 Add to MetaCart
(Show Context)
We design two computationallyefficient incentivecompatible mechanisms for combinatorial auctions with general bidder preferences. Both mechanisms are randomized, and are incentivecompatible in the universal sense. This is in contrast to recent previous work that only addresses the weaker notion of incentive compatibility in expectation. The first mechanism obtains an O(pm)approximation of the optimal social welfare for arbitrary bidder valuations  this is the best approximation possible in polynomial time. The second one obtains an O(log2 m) approximation for a subclass of bidder valuations that includes all submodular bidders. This improves over the best previously obtained incentivecompatible mechanism for this class which only provides an O(pm)approximation.
Maximizing a Monotone Submodular Function subject to a Matroid Constraint
, 2008
"... Let f: 2 X → R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2 approximation [14] for this problem. For certain special cases, e.g. max S≤k f(S), the greedy algorithm yields a (1 − 1/e)app ..."
Abstract

Cited by 62 (0 self)
 Add to MetaCart
Let f: 2 X → R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2 approximation [14] for this problem. For certain special cases, e.g. max S≤k f(S), the greedy algorithm yields a (1 − 1/e)approximation. It is known that this is optimal both in the value oracle model (where the only access to f is through a black box returning f(S) for a given set S) [28], and also for explicitly posed instances assuming P � = NP [10]. In this paper, we provide a randomized (1 − 1/e)approximation for any monotone submodular function and an arbitrary matroid. The algorithm works in the value oracle model. Our main tools are a variant of the pipage rounding technique of Ageev and Sviridenko [1], and a continuous greedy process that might be of independent interest. As a special case, our algorithm implies an optimal approximation for the Submodular Welfare Problem in the value oracle model [32]. As a second application, we show that the Generalized Assignment Problem (GAP) is also a special case; although the reduction requires X  to be exponential in the original problem size, we are able to achieve a (1 − 1/e − o(1))approximation for GAP, simplifying previously known algorithms. Additionally, the reduction enables us to obtain approximation algorithms for variants of GAP with more general constraints.
Tight informationtheoretic lower bounds for welfare maximization in combinatorial auctions
 Proc. of ACM EC
, 2008
"... ABSTRACT We provide tight informationtheoretic lower bounds for the welfare maximization problem in combinatorial auctions. In this problem, the goal is to partition m items among k bidders in a way that maximizes the sum of bidders' values for their allocated items. Bidders have complex pref ..."
Abstract

Cited by 45 (8 self)
 Add to MetaCart
(Show Context)
ABSTRACT We provide tight informationtheoretic lower bounds for the welfare maximization problem in combinatorial auctions. In this problem, the goal is to partition m items among k bidders in a way that maximizes the sum of bidders' values for their allocated items. Bidders have complex preferences over items expressed by valuation functions that assign values to all subsets of items. We study the "black box" setting in which the auctioneer has oracle access to the valuation functions of the bidders. In particular, we explore the wellknown value query model in which the permitted query to a valuation function is in the form of a subset of items, and the reply is the value assigned to that subset of items by the valuation function. We consider different classes of valuation functions: submodular, subadditive, and superadditive. For these classes, it has been shown that one can achieve approximation ratios of 1 −
Approximating Submodular Functions Everywhere
"... Submodular functions are a key concept in combinatorial optimization. Algorithms that involve submodular functions usually assume that they are given by a (value) oracle. Many interesting problems involving submodular functions can be solved using only polynomially many queries to the oracle, e.g., ..."
Abstract

Cited by 45 (4 self)
 Add to MetaCart
Submodular functions are a key concept in combinatorial optimization. Algorithms that involve submodular functions usually assume that they are given by a (value) oracle. Many interesting problems involving submodular functions can be solved using only polynomially many queries to the oracle, e.g., exact minimization or approximate maximization. In this paper, we consider the problem of approximating a nonnegative, monotone, submodular function f on a ground set of size n everywhere, after only poly(n) oracle queries. Our main result is a deterministic algorithm that makes poly(n) oracle queries and derives a function ˆ f such that, for every set S, ˆ f(S) approximates f(S) within a factor α(n), where α(n) = √ n + 1 for rank functions of matroids and α(n) = O ( √ n log n) for general monotone submodular functions. Our result is based on approximately finding a maximum volume inscribed ellipsoid in a symmetrized polymatroid, and the analysis involves various properties of submodular functions and polymatroids. Our algorithm is tight up to logarithmic factors. Indeed, we show that no algorithm can achieve a factor better than Ω ( √ n / log n), even for rank functions of a matroid.
Symmetry and approximability of submodular maximization problems
"... A number of recent results on optimization problems involving submodular functions have made use of the ”multilinear relaxation” of the problem [3], [8], [24], [14], [13]. We present a general approach to deriving inapproximability results in the value oracle model, based on the notion of ”symmetry ..."
Abstract

Cited by 45 (6 self)
 Add to MetaCart
A number of recent results on optimization problems involving submodular functions have made use of the ”multilinear relaxation” of the problem [3], [8], [24], [14], [13]. We present a general approach to deriving inapproximability results in the value oracle model, based on the notion of ”symmetry gap”. Our main result is that for any fixed instance that exhibits a certain ”symmetry gap ” in its multilinear relaxation, there is a naturally related class of instances for which a better approximation factor than the symmetry gap would require exponentially many oracle queries. This unifies several known hardness results for submodular maximization, e.g. the optimality of (1 − 1/e)approximation for monotone submodular maximization under a cardinality constraint [20], [7], and the impossibility of ( 1 +ɛ)approximation for uncon2 strained (nonmonotone) submodular maximization [8]. It follows from our result that ( 1 + ɛ)approximation is also impossible for 2 nonmonotone submodular maximization subject to a (nontrivial) matroid constraint. On the algorithmic side, we present a 0.309approximation for this problem, improving the previously known factor of 1 − o(1) [14]. 4 As another application, we consider the problem of maximizing a nonmonotone submodular function over the bases of a matroid. A ( 1 − o(1))approximation has been developed for this problem, 6 assuming that the matroid contains two disjoint bases [14]. We show that the best approximation one can achieve is indeed related to packings of bases in the matroid. Specifically, for any k ≥ 2, there is a class of matroids of fractional base packing number k k−1 ν = , such that any algorithm achieving a better than (1 − 1)approximation for this class would require exponentially many
On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP
 In Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer ScienceVolume 00
, 2008
"... In this paper we consider the following maximum budgeted allocation(MBA) problem: Given a set of m indivisible items and n agents; each agent i willing to pay bij on item j and with a maximum budget of Bi, the goal is to allocate items to agents to maximize revenue. The problem naturally arises as a ..."
Abstract

Cited by 34 (3 self)
 Add to MetaCart
In this paper we consider the following maximum budgeted allocation(MBA) problem: Given a set of m indivisible items and n agents; each agent i willing to pay bij on item j and with a maximum budget of Bi, the goal is to allocate items to agents to maximize revenue. The problem naturally arises as auctioneer revenue maximization in budgetconstrained auctions and as winner determination problem in combinatorial auctions when utilities of agents are budgetedadditive. Our main results are: • We give a 3/4approximation algorithm for MBA improving upon the previous best of ≃ 0.632[AM04, FV06]. Our techniques are based on a natural LP relaxation of MBA and our factor is optimal in the sense that it matches the integrality gap of the LP. • We prove it is NPhard to approximate MBA to any factor better than 15/16, previously only NPhardness was known [SS06, LLN01]. Our result also implies NPhardness of approximating maximum submodular welfare with demand oracle to a factor better than 15/16, improving upon the best known hardness of 275/276[FV06]. • Our hardness techniques can be modified to prove that it is NPhard to approximate the Generalized Assignment Problem (GAP) to any factor better than 10/11. This improves upon the 422/423 hardness of [CK00, CC02]. We use iterative rounding on a natural LP relaxation of MBA to obtain the 3/4approximation. We also give a (3/4 − ɛ)factor algorithm based on the primaldual schema which runs in Õ(nm) time, for any constant ɛ> 0. 1
Approximability of Combinatorial Problems with Multiagent Submodular Cost Functions
"... Abstract — Applications in complex systems such as the Internet have spawned recent interest in studying situations involving multiple agents with their individual cost or utility functions. In this paper, we introduce an algorithmic framework for studying combinatorial problems in the presence of m ..."
Abstract

Cited by 32 (6 self)
 Add to MetaCart
(Show Context)
Abstract — Applications in complex systems such as the Internet have spawned recent interest in studying situations involving multiple agents with their individual cost or utility functions. In this paper, we introduce an algorithmic framework for studying combinatorial problems in the presence of multiple agents with submodular cost functions. We study several fundamental covering problems (Vertex Cover, Shortest Path, Perfect Matching, and Spanning Tree) in this setting and establish tight upper and lower bounds for the approximability of these problems. 1.
An impossibility result for truthful combinatorial auctions with submodular valuations
 In ACM STOC
, 2011
"... ar ..."