Results 1 - 10
of
138
Mixed membership stochastic block models for relational data with application to protein-protein interactions
- In Proceedings of the International Biometrics Society Annual Meeting
, 2006
"... We develop a model for examining data that consists of pairwise measurements, for example, presence or absence of links between pairs of objects. Examples include protein interactions and gene regulatory networks, collections of author-recipient email, and social networks. Analyzing such data with p ..."
Abstract
-
Cited by 378 (52 self)
- Add to MetaCart
(Show Context)
We develop a model for examining data that consists of pairwise measurements, for example, presence or absence of links between pairs of objects. Examples include protein interactions and gene regulatory networks, collections of author-recipient email, and social networks. Analyzing such data with probabilistic models requires special assumptions, since the usual independence or exchangeability assumptions no longer hold. We introduce a class of latent variable models for pairwise measurements: mixed membership stochastic blockmodels. Models in this class combine a global model of dense patches of connectivity (blockmodel) and a local model to instantiate nodespecific variability in the connections (mixed membership). We develop a general variational inference algorithm for fast approximate posterior inference. We demonstrate the advantages of mixed membership stochastic blockmodels with applications to social networks and protein interaction networks.
SPECTRAL CLUSTERING AND THE HIGH-DIMENSIONAL STOCHASTIC BLOCKMODEL
- SUBMITTED TO THE ANNALS OF STATISTICS
"... Networks or graphs can easily represent a diverse set of data sources that are characterized by interacting units or actors. Social networks, representing people who communicate with each other, are one example. Communities or clusters of highly connected actors form an essential feature in the stru ..."
Abstract
-
Cited by 105 (7 self)
- Add to MetaCart
Networks or graphs can easily represent a diverse set of data sources that are characterized by interacting units or actors. Social networks, representing people who communicate with each other, are one example. Communities or clusters of highly connected actors form an essential feature in the structure of several empirical networks. Spectral clustering is a popular and computationally feasible method to discover these communities. The Stochastic Blockmodel (Holland, Laskey and Leinhardt, 1983) is a social network model with well defined communities; each node is a member of one community. For a network generated from the Stochastic Blockmodel, we bound the number of nodes “misclustered” by spectral clustering. The asymptotic results in this paper are the first clustering results that allow the number of clusters in the model to grow with the number of nodes, hence the name highdimensional. In order to study spectral clustering under the Stochastic Blockmodel, we first show that under the more general latent space model, the eigenvectors of the normalized graph Laplacian asymptotically converge to the eigenvectors of a “population” normalized graph Laplacian. Aside from the implication for spectral clustering, this provides insight into a graph visualization technique. Our method of studying the eigenvectors of random matrices is original.
Asymptotic normality of the maximumlikelihood estimator for general hidden Markov models
- Ann. Statist
, 1998
"... ar ..."
Learning to Discover Social Circles in Ego Networks
"... Our personal social networks are big and cluttered, and currently there is no good way to organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g. ‘circles ’ on Google+, and ‘lists ’ on Facebook and Twitter), however they are laborious to cons ..."
Abstract
-
Cited by 95 (5 self)
- Add to MetaCart
(Show Context)
Our personal social networks are big and cluttered, and currently there is no good way to organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g. ‘circles ’ on Google+, and ‘lists ’ on Facebook and Twitter), however they are laborious to construct and must be updated whenever a user’s network grows. We define a novel machine learning task of identifying users ’ social circles. We pose the problem as a node clustering problem on a user’s ego-network, a network of connections between her friends. We develop a model for detecting circles that combines network structure as well as user profile information. For each circle we learn its members and the circle-specific user profile similarity metric. Modeling node membership to multiple circles allows us to detect overlapping as well as hierarchically nested circles. Experiments show that our model accurately identifies circles on a diverse set of data from Facebook, Google+, and Twitter for all of which we obtain hand-labeled ground-truth. 1
Relational learning via latent social dimensions, in 'KDD '09
- Proceedings di of the 15th ACM SIGKDD international ti conference on Knowledge
, 2009
"... Social media such as blogs, Facebook, Flickr, etc., presents data in a network format rather than classical IID distribution. To address the interdependency among data instances, relational learning has been proposed, and collective inference based on network connectivity is adopted for prediction. ..."
Abstract
-
Cited by 86 (28 self)
- Add to MetaCart
(Show Context)
Social media such as blogs, Facebook, Flickr, etc., presents data in a network format rather than classical IID distribution. To address the interdependency among data instances, relational learning has been proposed, and collective inference based on network connectivity is adopted for prediction. However, the connections in social media are often multi-dimensional. An actor can connect to another actor due to different factors, e.g., alumni, colleagues, living in the same city or sharing similar interest, etc. Collective inference normally does not differentiate these connections. In this work, we propose to extract latent social dimensions based on network information first, and then utilize them as features for discriminative learning. These social dimensions describe different affiliations of social actors hidden in the network, and the subsequent discriminative learning can automatically determine which affiliations are better aligned with the class labels. Such a scheme is preferred when multiple diverse relations are associated with the same network. We conduct extensive experiments on social media data (one from a real-world blog site and the other from a popular content sharing site). Our model outperforms representative relational learning methods based on collective inference, especially when few labeled data are available. The sensitivity of this model and its connection to existing methods are also carefully examined.
Yes, there is a correlation - from social networks to personal behavior on the web
- In WWW ’08: Proceedings of the 17th international conference on World Wide Web
, 2008
"... Characterizing the relationship that exists between a person’s social group and his/her personal behavior has been a long standing goal of social network analysts. In this paper, we apply data mining techniques to study this relationship for a population of over 10 million people, by turning to onli ..."
Abstract
-
Cited by 79 (0 self)
- Add to MetaCart
(Show Context)
Characterizing the relationship that exists between a person’s social group and his/her personal behavior has been a long standing goal of social network analysts. In this paper, we apply data mining techniques to study this relationship for a population of over 10 million people, by turning to online sources of data. The analysis reveals that people who chat with each other (using instant messaging) are more likely to share interests (their Web searches are the same or topically similar). The more time they spend talking, the stronger this relationship is. People who chat with each other are also more likely to share other personal characteristics, such as their age and location (and, they are likely to be of opposite gender). Similar findings hold for people who do not necessarily talk to each other but do have a friend in common. Our analysis is based on a well-defined mathematical formulation of the problem, and is the largest such study we are aware of. Categories and Subject Descriptors
Community Evolution in Dynamic Multi-Mode Networks
- KDD'08
, 2008
"... A multi-mode network typically consists of multiple heterogeneous social actors among which various types of interactions could occur. Identifying communities in a multi-mode network can help understand the structural properties of the network, address the data shortage and unbalanced problems, and ..."
Abstract
-
Cited by 64 (14 self)
- Add to MetaCart
A multi-mode network typically consists of multiple heterogeneous social actors among which various types of interactions could occur. Identifying communities in a multi-mode network can help understand the structural properties of the network, address the data shortage and unbalanced problems, and assist tasks like targeted marketing and finding influential actors within or between groups. In general, a network and the membership of groups often evolve gradually. In a dynamic multi-mode network, both actor membership and interactions can evolve, which poses a challenging problem of identifying community evolution. In this work, we try to address this issue by employing the temporal information to analyze a multi-mode network. A spectral framework and its scalability issue are carefully studied. Experiments on both synthetic data and real-world large scale networks demonstrate the efficacy of our algorithm and suggest its generality in solving problems with complex relationships.
Discrete temporal models of social networks
, 2010
"... We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including maximum likelihood estimation algorithms. We discuss models of th ..."
Abstract
-
Cited by 60 (4 self)
- Add to MetaCart
We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including maximum likelihood estimation algorithms. We discuss models of this type and their properties, and give examples, as well as a demonstration of their use for hypothesis testing and classification. We believe our temporal ERG models represent a useful new framework for modeling time-evolving social networks, and rewiring networks from other domains such as gene regulation circuitry, and communication networks.
Stochastic blockmodels with a growing number of classes
, 2012
"... We present asymptotic and finite-sample results on the use of stochastic blockmodels for the analysis of network data. We show that the fraction of misclassified network nodes converges in probability to zero under maximum likelihood fitting when the number of classes is allowed to grow as the root ..."
Abstract
-
Cited by 47 (11 self)
- Add to MetaCart
We present asymptotic and finite-sample results on the use of stochastic blockmodels for the analysis of network data. We show that the fraction of misclassified network nodes converges in probability to zero under maximum likelihood fitting when the number of classes is allowed to grow as the root of the network size and the average network degree grows at least polylogarithmically in this size. We also establish finite-sample confidence bounds on maximum-likelihood blockmodel parameter estimates from data comprising independent Bernoulli random variates; these results hold uniformly over class assignment. We provide simulations verifying the conditions sufficient for our results, and conclude by fitting a logit parameterization of a stochastic blockmodel with covariates to a network data example comprising self-reported school friendships, resulting in block estimates that reveal residual structure.
Networks formed from interdependent networks
- PHYS
, 2011
"... ... obtained by analysing isolated networks, many real-world networks do in fact interact with and depend on other networks. The set of extensive results for the limiting case of non-interacting networks holds only to the extent that ignoring the presence of other networks can be justified. Recently ..."
Abstract
-
Cited by 45 (6 self)
- Add to MetaCart
... obtained by analysing isolated networks, many real-world networks do in fact interact with and depend on other networks. The set of extensive results for the limiting case of non-interacting networks holds only to the extent that ignoring the presence of other networks can be justified. Recently, an analytical framework for studying the percolation properties of interacting networks has been developed. Here we review this framework and the results obtained so far for connectivity properties of ‘networks of networks’ formed by interdependent random networks.