Results 11  20
of
521
Diffusion kernels on graphs and other discrete input spaces
 in: Proceedings of the 19th International Conference on Machine Learning
, 2002
"... The application of kernelbased learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation ..."
Abstract

Cited by 223 (5 self)
 Add to MetaCart
(Show Context)
The application of kernelbased learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation idea. In particular, we focus on generating kernels on graphs, for which we propose a special class of exponential kernels called diffusion kernels, which are based on the heat equation and can be regarded as the discretization of the familiar Gaussian kernel of Euclidean space.
A Generalized Representer Theorem
 In Proceedings of the Annual Conference on Computational Learning Theory
, 2001
"... Wahba's classical representer theorem states that the solutions of certain risk minimization problems involving an empirical risk term and a quadratic regularizer can be written as expansions in terms of the training examples. We generalize the theorem to a larger class of regularizers and ..."
Abstract

Cited by 222 (17 self)
 Add to MetaCart
(Show Context)
Wahba's classical representer theorem states that the solutions of certain risk minimization problems involving an empirical risk term and a quadratic regularizer can be written as expansions in terms of the training examples. We generalize the theorem to a larger class of regularizers and empirical risk terms, and give a selfcontained proof utilizing the feature space associated with a kernel. The result shows that a wide range of problems have optimal solutions that live in the finite dimensional span of the training examples mapped into feature space, thus enabling us to carry out kernel algorithms independent of the (potentially infinite) dimensionality of the feature space.
Kernel Methods for Relation Extraction
, 2002
"... We present an application of kernel methods to extracting relations from unstructured natural language sources. ..."
Abstract

Cited by 219 (0 self)
 Add to MetaCart
We present an application of kernel methods to extracting relations from unstructured natural language sources.
Marginalized kernels between labeled graphs
 Proceedings of the Twentieth International Conference on Machine Learning
, 2003
"... A new kernel function between two labeled graphs is presented. Feature vectors are defined as the counts of label paths produced by random walks on graphs. The kernel computation finally boils down to obtaining the stationary state of a discretetime linear system, thus is efficiently performed by s ..."
Abstract

Cited by 194 (15 self)
 Add to MetaCart
(Show Context)
A new kernel function between two labeled graphs is presented. Feature vectors are defined as the counts of label paths produced by random walks on graphs. The kernel computation finally boils down to obtaining the stationary state of a discretetime linear system, thus is efficiently performed by solving simultaneous linear equations. Our kernel is based on an infinite dimensional feature space, so it is fundamentally different from other string or tree kernels based on dynamic programming. We will present promising empirical results in classification of chemical compounds. 1 1.
Incremental parsing with the perceptron algorithm
 In ACL
, 2004
"... This paper describes an incremental parsing approach where parameters are estimated using a variant of the perceptron algorithm. A beamsearch algorithm is used during both training and decoding phases of the method. The perceptron approach was implemented with the same feature set as that of an exi ..."
Abstract

Cited by 177 (4 self)
 Add to MetaCart
This paper describes an incremental parsing approach where parameters are estimated using a variant of the perceptron algorithm. A beamsearch algorithm is used during both training and decoding phases of the method. The perceptron approach was implemented with the same feature set as that of an existing generative model (Roark, 2001a), and experimental results show that it gives competitive performance to the generative model on parsing the Penn treebank. We demonstrate that training a perceptron model to combine with the generative model during search provides a 2.1 percent Fmeasure improvement over the generative model alone, to 88.8 percent. 1
On the Generalization Ability of Online Learning Algorithms
 IEEE Transactions on Information Theory
, 2001
"... In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary onlin ..."
Abstract

Cited by 176 (7 self)
 Add to MetaCart
(Show Context)
In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary online learning algorithms. Furthermore, when applied to concrete online algorithms, our results yield tail bounds that in many cases are comparable or better than the best known bounds.
Diffusion kernels on graphs and other discrete structures
 In Proceedings of the ICML
, 2002
"... The application of kernelbased learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation ..."
Abstract

Cited by 176 (4 self)
 Add to MetaCart
(Show Context)
The application of kernelbased learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation idea. In particular, we focus on generating kernels on graphs, for which we propose a special class of exponential kernels, based on the heat equation, called diffusion kernels, and show that these can be regarded as the discretisation of the familiar Gaussian kernel of Euclidean space.
Use of the ZeroNorm With Linear Models and Kernel Methods
, 2002
"... We explore the use of the socalled zeronorm of the parameters of linear models in learning. ..."
Abstract

Cited by 174 (3 self)
 Add to MetaCart
We explore the use of the socalled zeronorm of the parameters of linear models in learning.
Fast Kernel Classifiers With Online And Active Learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Very high dimensional learning systems become theoretically possible when training examples are abundant. The computing cost then becomes the limiting factor. Any efficient learning algorithm should at least take a brief look at each example. But should all examples be given equal attention? This ..."
Abstract

Cited by 153 (18 self)
 Add to MetaCart
Very high dimensional learning systems become theoretically possible when training examples are abundant. The computing cost then becomes the limiting factor. Any efficient learning algorithm should at least take a brief look at each example. But should all examples be given equal attention? This contribution proposes an empirical answer. We first present an online SVM algorithm based on this premise. LASVM yields competitive misclassification rates after a single pass over the training examples, outspeeding stateoftheart SVM solvers. Then we show how active example selection can yield faster training, higher accuracies, and simpler models, using only a fraction of the training example labels.
Design challenges and misconceptions in named entity recognition
 PROCEEDINGS OF THE THIRTEENTH CONFERENCE ON COMPUTATIONAL NATURAL LANGUAGE LEARNING (CONLL)
, 2009
"... We analyze some of the fundamental design challenges and misconceptions that underlie the development of an efficient and robust NER system. In particular, we address issues such as the representation of text chunks, the inference approach needed to combine local NER decisions, the sources of prior ..."
Abstract

Cited by 142 (8 self)
 Add to MetaCart
(Show Context)
We analyze some of the fundamental design challenges and misconceptions that underlie the development of an efficient and robust NER system. In particular, we address issues such as the representation of text chunks, the inference approach needed to combine local NER decisions, the sources of prior knowledge and how to use them within an NER system. In the process of comparing several solutions to these challenges we reach some surprising conclusions, as well as develop an NER system that achieves 90.8 F1 score on the CoNLL2003 NER shared task, the best reported result for this dataset.