Results 1 - 10
of
2,323
Wireless sensor networks: a survey
, 2002
"... This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of fact ..."
Abstract
-
Cited by 2008 (23 self)
- Add to MetaCart
(Show Context)
This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are
A Survey on Sensor Networks
, 2002
"... Recent advancement in wireless communica- tions and electronics has enabled the develop- ment of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that research ..."
Abstract
-
Cited by 2002 (1 self)
- Add to MetaCart
Recent advancement in wireless communica- tions and electronics has enabled the develop- ment of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.
An Energy-Efficient MAC Protocol for Wireless Sensor Networks
, 2002
"... This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect senso ..."
Abstract
-
Cited by 1517 (36 self)
- Add to MetaCart
(Show Context)
This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption in listening to an idle channel, nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-andforward processing as data move through the network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC consumes 2--6 times more energy than S-MAC for traffic load with messages sent every 1-10s.
ANALYSIS OF WIRELESS SENSOR NETWORKS FOR HABITAT MONITORING
, 2004
"... We provide an in-depth study of applying wireless sensor networks (WSNs) to real-world habitat monitoring. A set of system design requirements were developed that cover the hardware design of the nodes, the sensor network software, protective enclosures, and system architecture to meet the require ..."
Abstract
-
Cited by 1490 (19 self)
- Add to MetaCart
We provide an in-depth study of applying wireless sensor networks (WSNs) to real-world habitat monitoring. A set of system design requirements were developed that cover the hardware design of the nodes, the sensor network software, protective enclosures, and system architecture to meet the requirements of biologists. In the summer of 2002, 43 nodes were deployed on a small island off the coast of Maine streaming useful live data onto the web. Although researchers anticipate some challenges arising in real-world deployments of WSNs, many problems can only be discovered through experience. We present a set of experiences from a four month long deployment on a remote island. We analyze the environmental and node health data to evaluate system performance. The close integration of WSNs with their environment provides environmental data at densities previously impossible. We show that the sensor data is also useful for predicting system operation and network failures. Based on over one million 2 Polastre et. al. data readings, we analyze the node and network design and develop network reliability profiles and failure models.
TAG: a Tiny AGgregation service for ad-hoc sensor networks
- IN OSDI
, 2002
"... ..."
(Show Context)
Versatile Low Power Media Access for Wireless Sensor Networks
, 2004
"... We propose B-MAC, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, B-MAC employs an adaptive preamble sampling scheme ..."
Abstract
-
Cited by 1099 (19 self)
- Add to MetaCart
We propose B-MAC, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, B-MAC employs an adaptive preamble sampling scheme to reduce duty cycle and minimize idle listening. B-MAC supports on-the-fly reconfiguration and provides bidirectional interfaces for system services to optimize performance, whether it be for throughput, latency, or power conservation. We build an analytical model of a class of sensor network applications. We use the model to show the effect of changing B-MAC’s parameters and predict the behavior of sensor network applications. By comparing B-MAC to conventional 802.11inspired protocols, specifically S-MAC, we develop an experimental characterization of B-MAC over a wide range of network conditions. We show that B-MAC’s flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC. By deploying a real world monitoring application with multihop networking, we validate our protocol design and model. Our results illustrate the need for flexible protocols to effectively realize energy efficient sensor network applications.
Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks
- ACM Wireless Networks Journal
, 2001
"... ..."
(Show Context)
Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures
-
, 2003
"... We consider routing security in wireless sensor networks. Many sensor network routing protocols have been proposed, but none of them have been designed with security as agq1( We propose securitygcur forrouting in sensor networks, show how attacks agacks ad-hoc and peer-to-peer networks can be ..."
Abstract
-
Cited by 827 (3 self)
- Add to MetaCart
We consider routing security in wireless sensor networks. Many sensor network routing protocols have been proposed, but none of them have been designed with security as agq1( We propose securitygcur forrouting in sensor networks, show how attacks agacks ad-hoc and peer-to-peer networks can be adapted into powerful attacks agacks sensor networks, introduce two classes of novel attacks agacks sensor networks----sinkholes and HELLO floods, and analyze the security of all the major sensor networkrouting protocols. We describe crippling attacks against all of them and sug@(5 countermeasures anddesig considerations. This is the first such analysis of secure routing in sensor networks.
TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications
, 2003
"... Accurate and scalable simulation has historically been a key enabling factor for systems research. We present TOSSIM, a simulator for TinyOS wireless sensor networks. By exploiting the sensor network domain and TinyOS’s design, TOSSIM can capture network behavior at a high fidelity while scaling to ..."
Abstract
-
Cited by 784 (19 self)
- Add to MetaCart
Accurate and scalable simulation has historically been a key enabling factor for systems research. We present TOSSIM, a simulator for TinyOS wireless sensor networks. By exploiting the sensor network domain and TinyOS’s design, TOSSIM can capture network behavior at a high fidelity while scaling to thousands of nodes. By using a probabilistic bit error model for the network, TOSSIM remains simple and efficient, but expressive enough to capture a wide range of network interactions. Using TOSSIM, we have discovered several bugs in TinyOS, ranging from network bitlevel MAC interactions to queue overflows in an ad-hoc routing protocol. Through these and other evaluations, we show that detailed, scalable sensor network simulation is possible.
Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks
- In SenSys
, 2003
"... The dynamic and lossy nature of wireless communication poses major challenges to reliable, self-organizing multihop networks. These non-ideal characteristics are more problematic with the primitive, low-power radio transceivers found in sensor networks, and raise new issues that routing protocols mu ..."
Abstract
-
Cited by 781 (20 self)
- Add to MetaCart
(Show Context)
The dynamic and lossy nature of wireless communication poses major challenges to reliable, self-organizing multihop networks. These non-ideal characteristics are more problematic with the primitive, low-power radio transceivers found in sensor networks, and raise new issues that routing protocols must address. Link connectivity statistics should be captured dynamically through an efficient yet adaptive link estimator and routing decisions should exploit such connectivity statistics to achieve reliability. Link status and routing information must be maintained in a neighborhood table with constant space regardless of cell density. We study and evaluate link estimator, neighborhood table management, and reliable routing protocol techniques. We focus on a many-to-one, periodic data collection workload. We narrow the design space through evaluations on large-scale, high-level simulations to 50-node, in-depth empirical experiments. The most effective solution uses a simple time averaged EWMA estimator, frequency based table management, and cost-based routing.