Results 1 - 10
of
810
A simple cooperative diversity method based on network path selection
- IEEE J. SELECT. AREAS COMMUN
, 2006
"... Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However, most of the proposed solutions require distributed space–time coding algorithms, the careful design of which is left for future investi ..."
Abstract
-
Cited by 452 (14 self)
- Add to MetaCart
(Show Context)
Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However, most of the proposed solutions require distributed space–time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of available relays and then uses this “best ” relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space–time coding for relay nodes is required, such as those proposed by Laneman and Wornell (2003). The simplicity of the technique allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability, and efficiency in future 4G wireless systems.
Capacity Limits of MIMO Channels
- IEEE J. SELECT. AREAS COMMUN
, 2003
"... We provide an overview of the extensive recent results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about t ..."
Abstract
-
Cited by 419 (17 self)
- Add to MetaCart
We provide an overview of the extensive recent results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about the underlying time-varying channel model and how well it can be tracked at the receiver, as well as at the transmitter. More realistic assumptions can dramatically impact the potential capacity gains of MIMO techniques. For time-varying MIMO channels there are multiple Shannon theoretic capacity definitions and, for each definition, different correlation models and channel information assumptions that we consider. We first provide a comprehensive summary of ergodic and capacity versus outage results for single-user MIMO channels. These results indicate that the capacity gain obtained from multiple antennas heavily depends
The capacity region of the Gaussian multiple-input multiple-output broadcast channel
- IEEE TRANS. INF. THEORY
, 2006
"... The Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC) is considered. The dirty-paper coding (DPC) rate region is shown to coincide with the capacity region. To that end, a new notion of an enhanced broadcast channel is introduced and is used jointly with the entropy power inequa ..."
Abstract
-
Cited by 339 (7 self)
- Add to MetaCart
The Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC) is considered. The dirty-paper coding (DPC) rate region is shown to coincide with the capacity region. To that end, a new notion of an enhanced broadcast channel is introduced and is used jointly with the entropy power inequality, to show that a superposition of Gaussian codes is optimal for the degraded vector broadcast channel and that DPC is optimal for the nondegraded case. Furthermore, the capacity region is characterized under a wide range of input constraints, accounting, as special cases, for the total power and the per-antenna power constraints.
On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming
- IEEE J. SELECT. AREAS COMMUN
, 2006
"... Although the capacity of multiple-input/multiple-output (MIMO) broadcast channels (BCs) can be achieved by dirty paper coding (DPC), it is difficult to implement in practical systems. This paper investigates if, for a large number of users, simpler schemes can achieve the same performance. Specifica ..."
Abstract
-
Cited by 308 (4 self)
- Add to MetaCart
Although the capacity of multiple-input/multiple-output (MIMO) broadcast channels (BCs) can be achieved by dirty paper coding (DPC), it is difficult to implement in practical systems. This paper investigates if, for a large number of users, simpler schemes can achieve the same performance. Specifically, we show that a zero-forcing beamforming (ZFBF) strategy, while generally suboptimal, can achieve the same asymptotic sum capacity as that of DPC, as the number of users goes to infinity. In proving this asymptotic result, we provide an algorithm for determining which users should be active under ZFBF. These users are semiorthogonal to one another and can be grouped for simultaneous transmission to enhance the throughput of scheduling algorithms. Based on the user grouping, we propose and compare two fair scheduling schemes in round-robin ZFBF and proportional-fair ZFBF. We provide numerical results to confirm the optimality of ZFBF and to compare the performance of ZFBF and proposed fair scheduling schemes with that of various MIMO BC strategies.
Cross-Layer Design for Wireless Networks
- IEEE Communications Magazine
, 2003
"... As the cellular and PCS world collides with Wireless LANs and Internet-based packet data, new networking approaches will support the integration of voice and data on the composite infrastructure of cellular base stations and Ethernet-based wireless access points. This paper highlights some of the pa ..."
Abstract
-
Cited by 254 (2 self)
- Add to MetaCart
(Show Context)
As the cellular and PCS world collides with Wireless LANs and Internet-based packet data, new networking approaches will support the integration of voice and data on the composite infrastructure of cellular base stations and Ethernet-based wireless access points. This paper highlights some of the past accomplishments and promising research avenues for an important topic in the creation of future wireless networks. In this paper, we address the issue of cross-layer networking, where the physical and MAC layer knowledge of the wireless medium is shared with higher layers, in order to provide efficient methods of allocating network resources and applications over the Internet. In essence, future networks will need to provide ”impedance matching ” of the instantaneous radio channel conditions and capacity needs with the traffic and congestion conditions found over the packet-based world of the Internet. Further, such matching will need to be coordinated with a wide range of particular applications and user expectations, making the topic of cross-layer networking an increasingly important one for the evolving wireless build-out. 1
An overview of limited feedback in wireless communication systems
- IEEE J. SEL. AREAS COMMUN
, 2008
"... It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channe ..."
Abstract
-
Cited by 205 (41 self)
- Add to MetaCart
(Show Context)
It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channel knowledge at the transmitter. The transmitter in many systems (such as those using frequency division duplexing) can not leverage techniques such as training to obtain channel state information. Over the last few years, research has repeatedly shown that allowing the receiver to send a small number of information bits about the channel conditions to the transmitter can allow near optimal channel adaptation. These practical systems, which are commonly referred to as limited or finite-rate feedback systems, supply benefits nearly identical to unrealizable perfect transmitter channel knowledge systems when they are judiciously designed. In this tutorial, we provide a broad look at the field of limited feedback wireless communications. We review work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology. We also provide a synopsis of the role of limited feedback in the standardization of next generation wireless systems.
Maximizing Queueing Network Utility Subject to Stability: Greedy Primal-dual algorithm
- Queueing Systems
, 2005
"... We study a model of controlled queueing network, which operates and makes control decisions in discrete time. An underlying random network mode determines the set of available controls in each time slot. Each control decision \produces " a certain vector of \commodities"; it also has assoc ..."
Abstract
-
Cited by 204 (9 self)
- Add to MetaCart
We study a model of controlled queueing network, which operates and makes control decisions in discrete time. An underlying random network mode determines the set of available controls in each time slot. Each control decision \produces " a certain vector of \commodities"; it also has associated \traditional " queueing control eect, i.e., it determines traÆc (customer) arrival rates, service rates at the nodes, and random routing of processed customers among the nodes. The problem is to nd a dynamic control strategy which maximizes a concave utility function H(X), where X is the average value of commodity vector, subject to the constraint that network queues remain stable. We introduce a dynamic control algorithm, which we call Greedy Primal-Dual (GPD) algorithm, and prove its asymptotic optimality. We show that our network model and GPD algorithm accommodate a wide range of applications. As one exam-ple, we consider the problem of congestion control of networks where both traÆc sources and network processing nodes may be randomly time-varying and interdependent. We also discuss a variety of resource allocation problems in wireless networks, which in particular involve average power consumption constraints and/or optimization, as well as traÆc rate constraints.
Fair Resource Allocation in Wireless Networks using Queue-length-based Scheduling and Congestion Control
"... We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different re-ceiver. The channel conditions may be time-varying and different for different receivers. It is well-known that appropriate ..."
Abstract
-
Cited by 202 (45 self)
- Add to MetaCart
We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different re-ceiver. The channel conditions may be time-varying and different for different receivers. It is well-known that appropriately chosen queue-length based policies are throughput-optimal while other policies based on the estimation of channel statistics can be used to allocate resources fairly (such as proportional fairness) among competing users. In this paper, we show that a combination of queue-length-based scheduling at the base station and congestion control implemented either at the base station or at the end users can lead to fair resource allocation and queue-length stability.
MIMO Broadcast Channels With Finite-Rate Feedback
, 2006
"... Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e., multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this correspondence, a system where each receiver has per ..."
Abstract
-
Cited by 189 (1 self)
- Add to MetaCart
Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e., multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this correspondence, a system where each receiver has perfect channel knowledge, but the transmitter only receives quantized information regarding the channel instantiation is analyzed. The well-known zero-forcing transmission technique is considered, and simple expressions for the throughput degradation due to finite-rate feedback are derived. A key finding is that the feedback rate per mobile must be increased linearly with the signal-to-noise ratio (SNR) (in decibels) in order to achieve the full multiplexing gain. This is in sharp contrast to point-to-point multiple-input multiple-output (MIMO) systems, in which it is not necessary to increase the feedback rate as a function of the SNR.