Results 1  10
of
11
The Dynamical Systems Method for solving nonlinear equations with monotone operators
"... A review of the authors’s results is given. Several methods are discussed for solving nonlinear equations F(u) = f, where F is a monotone operator in a Hilbert space, and noisy data are given in place of the exact data. A discrepancy principle for solving the equation is formulated and justified. V ..."
Abstract

Cited by 15 (12 self)
 Add to MetaCart
A review of the authors’s results is given. Several methods are discussed for solving nonlinear equations F(u) = f, where F is a monotone operator in a Hilbert space, and noisy data are given in place of the exact data. A discrepancy principle for solving the equation is formulated and justified. Various versions of the Dynamical Systems Method (DSM) for solving the equation are formulated. These methods consist of a regularized Newtontype method, a gradienttype method, and a simple iteration method. A priori and a posteriori choices of stopping rules for these methods are proposed and justified. Convergence of the solutions, obtained by these methods, to the minimal norm solution to the equation F(u) = f is proved. Iterative schemes with a posteriori choices of stopping rule corresponding to the proposed DSM are formulated. Convergence of these iterative schemes to a solution to equation F(u) = f is justified. New nonlinear differential inequalities are derived and applied to a study of largetime behavior of solutions to evolution equations. Discrete versions of these inequalities are established.
Dynamical systems gradient method for solving nonlinear . . .
 ACTA APPL MATH
"... A version of the Dynamical Systems Gradient Method for solving illposed nonlinear monotone operator equations is studied in this paper. A discrepancy principle is proposed and justified. A numerical experiment was carried out with the new stopping rule. Numerical experiments show that the proposed ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
(Show Context)
A version of the Dynamical Systems Gradient Method for solving illposed nonlinear monotone operator equations is studied in this paper. A discrepancy principle is proposed and justified. A numerical experiment was carried out with the new stopping rule. Numerical experiments show that the proposed stopping rule is efficient. Equations with monotone operators are of interest in many applications.
How large is the class of operator equations solvable by a DSM Newtontype method?
"... It is proved that the class of operator equations F (y) = f solvable by a DSM (Dynamical Systems Method) Newtontype method ˙u = −[F ′ (u) + a(t)I] −1 [F u(t) + a(t)u − f], u(0) = u0, (∗) is large. Here F: X → X is a continuously Fréchet differentiable operator in a Banach space X, a(t) : [0, ∞) ..."
Abstract

Cited by 6 (6 self)
 Add to MetaCart
It is proved that the class of operator equations F (y) = f solvable by a DSM (Dynamical Systems Method) Newtontype method ˙u = −[F ′ (u) + a(t)I] −1 [F u(t) + a(t)u − f], u(0) = u0, (∗) is large. Here F: X → X is a continuously Fréchet differentiable operator in a Banach space X, a(t) : [0, ∞) → C is a function, limt→ ∞ a(t)  = 0, and there exists a y ∈ X such that F (y) = f. Under weak assumptions on F and a it is proved that This justifies the DSM (*). ∃!u(t) ∀t ≥ 0; ∃u(∞); F (u(∞)) = f.
Dynamical systems gradient method for solving illconditioned linear algebraic systems
"... ..."
(Show Context)
Dynamical Systems Method (DSM) for solving equations with monotone operators without smoothness assumptions on F'(u)
 JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
, 2010
"... ..."
DSM of Newton type for solving operator equations F(u) = f with minimal smoothness assumptions on F
 JOURN. COMP. SCI AND MATH., 3, N1/2, (2010), 355
, 2010
"... This paper is a review of the authors’ results on the DSM (Dynamical Systems Method) for solving operator equation (*) F (u) = f. It is assumed that (*) is solvable. The novel feature of the results is the minimal assumption on the smoothness of F. It is assumed that F is continuously Fréchet diffe ..."
Abstract
 Add to MetaCart
This paper is a review of the authors’ results on the DSM (Dynamical Systems Method) for solving operator equation (*) F (u) = f. It is assumed that (*) is solvable. The novel feature of the results is the minimal assumption on the smoothness of F. It is assumed that F is continuously Fréchet differentiable, but no smoothness assumptions on F ′ (u) are imposed. The DSM for solving equation (*) is developed. Under weak assumptions global existence of the solution u(t) is proved, the existence of u(∞) is established, and the relation F(u(∞)) = f is obtained. The DSM is developed for a stable solution of equation (*) when noisy data fδ are given, ‖‖f − fδ‖‖ ≤ δ.
Dynamical Systems Gradient method for solving nonlinear equations with monotone operators
"... A version of the Dynamical Systems Gradient Method for solving illposed nonlinear monotone operator equations is studied in this paper. A discrepancy principle is proposed and justified. A numerical experiment was carried out with the new stopping rule. Numerical experiments show that the proposed ..."
Abstract
 Add to MetaCart
A version of the Dynamical Systems Gradient Method for solving illposed nonlinear monotone operator equations is studied in this paper. A discrepancy principle is proposed and justified. A numerical experiment was carried out with the new stopping rule. Numerical experiments show that the proposed stopping rule is efficient. Equations with monotone operators are of interest in many applications.
1 Dynamical Systems Gradient method for solving nonlinear equations with monotone operators
"... A version of the Dynamical Systems Gradient Method for solving illposed nonlinear monotone operator equations is studied in this paper. A discrepancy principle is proposed and justified. A numerical experiment was carried out with the new stopping rule. Numerical experiments show that the proposed ..."
Abstract
 Add to MetaCart
A version of the Dynamical Systems Gradient Method for solving illposed nonlinear monotone operator equations is studied in this paper. A discrepancy principle is proposed and justified. A numerical experiment was carried out with the new stopping rule. Numerical experiments show that the proposed stopping rule is efficient. Equations with monotone operators are of interest in many applications.