Results 1 - 10
of
941
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
"... Face recognition has benefitted greatly from the many databases that have been produced to study it. Most of these databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as posi ..."
Abstract
-
Cited by 449 (11 self)
- Add to MetaCart
(Show Context)
Face recognition has benefitted greatly from the many databases that have been produced to study it. Most of these databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as position, pose, lighting, expression, background, camera quality, occlusion, age, and gender. While there are many applications for face recognition technology in which one can control the parameters of image acquisition, there are also many applications in which the practitioner has little or no control over such parameters. This database is provided as an aid in studying the latter, unconstrained, face recognition problem. The database represents an initial attempt to provide a set of labeled face photographs spanning the range of conditions typically encountered by people in their everyday lives. The database exhibits “natural ” variability in pose, lighting, focus, resolution, facial expression, age, gender, race, accessories, make-up, occlusions, background, and photographic quality. Despite this variability, the images in the database are presented in a simple and consistent format for maximum ease of use. In addition to describing the details of the database and its acquisition, we provide specific experimental paradigms for which the database is suitable. This is done in an effort to make research performed with the database as consistent and comparable as possible.
Graph Cuts and Efficient N-D Image Segmentation
, 2006
"... Combinatorial graph cut algorithms have been successfully applied to a wide range of problems in vision and graphics. This paper focusses on possibly the simplest application of graph-cuts: segmentation of objects in image data. Despite its simplicity, this application epitomizes the best features ..."
Abstract
-
Cited by 307 (7 self)
- Add to MetaCart
Combinatorial graph cut algorithms have been successfully applied to a wide range of problems in vision and graphics. This paper focusses on possibly the simplest application of graph-cuts: segmentation of objects in image data. Despite its simplicity, this application epitomizes the best features of combinatorial graph cuts methods in vision: global optima, practical efficiency, numerical robustness, ability to fuse a wide range of visual cues and constraints, unrestricted topological properties of segments, and applicability to N-D problems. Graph cuts based approaches to object extraction have also been shown to have interesting connections with earlier segmentation methods such as snakes, geodesic active contours, and level-sets. The segmentation energies optimized by graph cuts combine boundary regularization with region-based properties in the same fashion as Mumford-Shah style functionals. We present motivation and detailed technical description of the basic combinatorial optimization framework for image segmentation via s/t graph cuts. After the general concept of using binary graph cut algorithms for object segmentation was first proposed and tested in Boykov and Jolly (2001), this idea was widely studied in computer vision and graphics communities. We provide links to a large number of known extensions based on iterative parameter re-estimation and learning, multi-scale or hierarchical approaches, narrow bands, and other techniques for demanding photo, video, and medical applications.
Robust Higher Order Potentials for Enforcing Label Consistency
, 2009
"... This paper proposes a novel framework for labelling problems which is able to combine multiple segmentations in a principled manner. Our method is based on higher order conditional random fields and uses potentials defined on sets of pixels (image segments) generated using unsupervised segmentation ..."
Abstract
-
Cited by 259 (34 self)
- Add to MetaCart
This paper proposes a novel framework for labelling problems which is able to combine multiple segmentations in a principled manner. Our method is based on higher order conditional random fields and uses potentials defined on sets of pixels (image segments) generated using unsupervised segmentation algorithms. These potentials enforce label consistency in image regions and can be seen as a generalization of the commonly used pairwise contrast sensitive smoothness potentials. The higher order potential functions used in our framework take the form of the Robust P n model and are more general than the P n Potts model recently proposed by Kohli et al. We prove that the optimal swap and expansion moves for energy functions composed of these potentials can be computed by solving a stmincut problem. This enables the use of powerful graph cut based move making algorithms for performing inference in the framework. We test our method on the problem of multi-class object segmentation by augmenting the conventional CRF used for object segmentation with higher order potentials defined on image regions. Experiments on challenging data sets show that integration of higher order potentials quantitatively and qualitatively improves results leading to much better definition of object boundaries. We
Geometric context from a single image.
- In Proc. Int. Conf. on Computer Vision.
, 2005
"... ..."
(Show Context)
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
- PAMI
"... Abstract—Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superp ..."
Abstract
-
Cited by 222 (3 self)
- Add to MetaCart
(Show Context)
Abstract—Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation. Index Terms—Superpixels, segmentation, clustering, k-means. I.
Automatic photo pop-up
- in ACM SIGGRAPH
, 2005
"... Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of ..."
Abstract
-
Cited by 194 (9 self)
- Add to MetaCart
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions
Global Contrast based Salient Region Detection
"... Reliable estimation of visual saliency allows appropriate processing of images without prior knowledge of their contents, and thus remains an important step in many computer vision tasks including image segmentation, object recognition, and adaptive compression. We propose a regional contrast based ..."
Abstract
-
Cited by 185 (17 self)
- Add to MetaCart
(Show Context)
Reliable estimation of visual saliency allows appropriate processing of images without prior knowledge of their contents, and thus remains an important step in many computer vision tasks including image segmentation, object recognition, and adaptive compression. We propose a regional contrast based saliency extraction algorithm, which simultaneously evaluates global contrast differences and spatial coherence. The proposed algorithm is simple, efficient, and yields full resolution saliency maps. Our algorithm consistently outperformed existing saliency detection methods, yielding higher precision and better recall rates, when evaluated using one of the largest publicly available data sets. We also demonstrate how the extracted saliency map can be used to create high quality segmentation masks for subsequent image processing. 1.
Associative hierarchical CRFs for object class image segmentation
- in Proc. ICCV
, 2009
"... Most methods for object class segmentation are formulated as a labelling problem over a single choice of quantisation of an image space- pixels, segments or group of segments. It is well known that each quantisation has its fair share of pros and cons; and the existence of a common optimal quantisat ..."
Abstract
-
Cited by 172 (25 self)
- Add to MetaCart
(Show Context)
Most methods for object class segmentation are formulated as a labelling problem over a single choice of quantisation of an image space- pixels, segments or group of segments. It is well known that each quantisation has its fair share of pros and cons; and the existence of a common optimal quantisation level suitable for all object categories is highly unlikely. Motivated by this observation, we propose a hierarchical random field model, that allows integration of features computed at different levels of the quantisation hierarchy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalises much of the previous work based on pixels or segments. We evaluate its efficiency on some of the most challenging data-sets for object class segmentation, and show it obtains state-of-the-art results. 1.
V.: What is an object
, 2010
"... We present a generic objectness measure, quantifying how likely it is for an image window to contain an object of any class. We explicitly train it to distinguish objects with a well-defined boundary in space, such as cows and telephones, from amorphous background elements, such as grass and road. T ..."
Abstract
-
Cited by 172 (15 self)
- Add to MetaCart
We present a generic objectness measure, quantifying how likely it is for an image window to contain an object of any class. We explicitly train it to distinguish objects with a well-defined boundary in space, such as cows and telephones, from amorphous background elements, such as grass and road. The measure combines in a Bayesian framework several image cues measuring characteristics of objects, such as appearing different from their surroundings and having a closed boundary. This includes an innovative cue measuring the closed boundary characteristic. In experiments on the challenging PASCAL VOC 07 dataset, we show this new cue to outperform a state-of-the-art saliency measure [17], and the combined measure to perform better than any cue alone. Finally, we show how to sample windows from an image according to their objectness distribution and give an algorithm to employ them as location priors for modern class-specific object detectors. In experiments on PASCAL VOC 07 we show this greatly reduces the number of windows evaluated by class-specific object detectors. 1.