Results 1 - 10
of
591
Histograms of Oriented Gradients for Human Detection
- In CVPR
, 2005
"... We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly out ..."
Abstract
-
Cited by 3735 (9 self)
- Add to MetaCart
(Show Context)
We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds. 1
A PERFORMANCE EVALUATION OF LOCAL DESCRIPTORS
, 2005
"... In this paper we compare the performance of descriptors computed for local interest regions, as for example extracted by the Harris-Affine detector [32]. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how their perfo ..."
Abstract
-
Cited by 1783 (51 self)
- Add to MetaCart
(Show Context)
In this paper we compare the performance of descriptors computed for local interest regions, as for example extracted by the Harris-Affine detector [32]. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how their performance depends on the interest region detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the detector. Our evaluation uses as criterion recall with respect to precision and is carried out for different image transformations. We compare shape context [3], steerable filters [12], PCA-SIFT [19], differential invariants [20], spin images [21], SIFT [26], complex filters [37], moment invariants [43], and cross-correlation for different types of interest regions. We also propose an extension of the SIFT descriptor, and show that it outperforms the original method. Furthermore, we observe that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT based descriptors perform best. Moments and steerable filters show the best performance among the low dimensional descriptors.
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract
-
Cited by 1422 (49 self)
- Add to MetaCart
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI-SVM in terms of latent variables. A latent SVM is semi-convex and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.
SURF: Speeded Up Robust Features
- ECCV
"... Abstract. In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Ro-bust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be comp ..."
Abstract
-
Cited by 897 (12 self)
- Add to MetaCart
(Show Context)
Abstract. In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Ro-bust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descrip-tors (in casu, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps. The paper presents experimental results on a standard evaluation set, as well as on imagery obtained in the context of a real-life object recognition application. Both show SURF’s strong performance. 1
Behavior recognition via sparse spatio-temporal features
- In VS-PETS
, 2005
"... A common trend in object recognition is to detect and leverage the use of sparse, informative feature points. The use of such features makes the problem more manageable while providing increased robustness to noise and pose variation. In this work we develop an extension of these ideas to the spatio ..."
Abstract
-
Cited by 717 (4 self)
- Add to MetaCart
(Show Context)
A common trend in object recognition is to detect and leverage the use of sparse, informative feature points. The use of such features makes the problem more manageable while providing increased robustness to noise and pose variation. In this work we develop an extension of these ideas to the spatio-temporal case. For this purpose, we show that the direct 3D counterparts to commonly used 2D interest point detectors are inadequate, and we propose an alternative. Anchoring off of these interest points, we devise a recognition algorithm based on spatio-temporally windowed data. We present recognition results on a variety of datasets including both human and rodent behavior. 1.
The pyramid match kernel: Discriminative classification with sets of image features
- IN ICCV
, 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract
-
Cited by 544 (29 self)
- Add to MetaCart
(Show Context)
Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondences – generally a computationally expensive task that becomes impractical for large set sizes. We present a new fast kernel function which maps unordered feature sets to multi-resolution histograms and computes a weighted histogram intersection in this space. This “pyramid match” computation is linear in the number of features, and it implicitly finds correspondences based on the finest resolution histogram cell where a matched pair first appears. Since the kernel does not penalize the presence of extra features, it is robust to clutter. We show the kernel function is positive-definite, making it valid for use in learning algorithms whose optimal solutions are guaranteed only for Mercer kernels. We demonstrate our algorithm on object recognition tasks and show it to be accurate and dramatically faster than current approaches.
Speeded-Up Robust Features (SURF)
, 2008
"... This article presents a novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features). SURF approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faste ..."
Abstract
-
Cited by 313 (5 self)
- Add to MetaCart
This article presents a novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features). SURF approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descriptors (specifically, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps. The paper encompasses a detailed description of the detector and descriptor and then explores the effect of the most important parameters. We conclude the article with SURF’s application to two challenging, yet converse goals: camera calibration as a special case of image registration, and object recognition. Our experiments underline SURF’s usefulness in a broad range of topics in computer vision.
Keypoint recognition using randomized trees
- IEEE Trans. Pattern Anal. Mach. Intell
"... In many 3–D object-detection and pose-estimation problems, run-time performance is of critical importance. However, there usually is time to train the system, which we will show to be very useful. Assuming that several registered images of the target object are available, we developed a keypoint-bas ..."
Abstract
-
Cited by 215 (17 self)
- Add to MetaCart
(Show Context)
In many 3–D object-detection and pose-estimation problems, run-time performance is of critical importance. However, there usually is time to train the system, which we will show to be very useful. Assuming that several registered images of the target object are available, we developed a keypoint-based approach that is effective in this context by formulating wide-baseline matching of keypoints extracted from the input images to those found in the model images as a classification problem. This shifts much of the computational burden to a training phase, without sacrificing recognition performance. As a result, the resulting algorithm is robust, accurate, and fast-enough for frame-rate performance. This reduction in run-time computational complexity is our first contribution. Our second contribution is to show that, in this context, a simple and fast keypoint detector suffices to support detection and tracking even under large perspective and scale variations. While earlier methods require a detector that can be expected to produce very repeatable results in general, which usually is very time-consuming, we simply find the most repeatable object keypoints for the specific target object during the training phase. We have incorporated these ideas into a real-time system that detects planar, non-planar, and deformable objects. It then estimates the pose of the rigid ones and the deformations of the others.
Learning Local Image Descriptors
- Proc. IEEE Conf. Computer Vision and Pattern Recognition
, 2007
"... Abstract—In this paper, we explore methods for learning local image descriptors from training data. We describe a set of building blocks for constructing descriptors which can be combined together and jointly optimized so as to minimize the error of a nearest-neighbor classifier. We consider both li ..."
Abstract
-
Cited by 174 (2 self)
- Add to MetaCart
(Show Context)
Abstract—In this paper, we explore methods for learning local image descriptors from training data. We describe a set of building blocks for constructing descriptors which can be combined together and jointly optimized so as to minimize the error of a nearest-neighbor classifier. We consider both linear and nonlinear transforms with dimensionality reduction, and make use of discriminant learning techniques such as Linear Discriminant Analysis (LDA) and Powell minimization to solve for the parameters. Using these techniques, we obtain descriptors that exceed state-of-the-art performance with low dimensionality. In addition to new experiments and recommendations for descriptor learning, we are also making available a new and realistic ground truth data set based on multiview stereo data. Index Terms—Image descriptors, local features, discriminative learning, SIFT. Ç 1