Results 1 - 10
of
173
Meshless deformations based on shape matching
- ACM TRANS. GRAPH
, 2005
"... We present a new approach for simulating deformable objects. The underlying model is geometrically motivated. It handles pointbased objects and does not need connectivity information. The approach does not require any pre-processing, is simple to compute, and provides unconditionally stable dynamic ..."
Abstract
-
Cited by 169 (12 self)
- Add to MetaCart
We present a new approach for simulating deformable objects. The underlying model is geometrically motivated. It handles pointbased objects and does not need connectivity information. The approach does not require any pre-processing, is simple to compute, and provides unconditionally stable dynamic simulations. The main idea of our deformable model is to replace energies by geometric constraints and forces by distances of current positions to goal positions. These goal positions are determined via a generalized shape matching of an undeformed rest state with the current deformed state of the point cloud. Since points are always drawn towards well-defined locations, the overshooting problem of explicit integration schemes is eliminated. The versatility of the approach in terms of object representations that can be handled, the efficiency in terms of memory and computational complexity, and the unconditional stability of the dynamic simulation make the approach particularly interesting for games.
Skinning mesh animations.
- Proceedings of SIGGRAPH
, 2005
"... Abstract We extend approaches for skinning characters to the general setting of skinning deformable mesh animations. We provide an automatic algorithm for generating progressive skinning approximations, that is particularly efficient for pseudo-articulated motions. Our contributions include the use ..."
Abstract
-
Cited by 134 (6 self)
- Add to MetaCart
Abstract We extend approaches for skinning characters to the general setting of skinning deformable mesh animations. We provide an automatic algorithm for generating progressive skinning approximations, that is particularly efficient for pseudo-articulated motions. Our contributions include the use of nonparametric mean shift clustering of high-dimensional mesh rotation sequences to automatically identify statistically relevant bones, and robust least squares methods to determine bone transformations, bone-vertex influence sets, and vertex weight values. We use a low-rank data reduction model defined in the undeformed mesh configuration to provide progressive convergence with a fixed number of bones. We show that the resulting skinned animations enable efficient hardware rendering, rest pose editing, and deformable collision detection. Finally, we present numerous examples where skins were automatically generated using a single set of parameter values.
Animating sand as a fluid
- ACM Trans. Graph. (Proc. SIGGRAPH
, 2005
"... My thesis presents a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes of sand, we abstract away the individual grains and think of the sand as a continuum. In particular we show that an existing water simulator can be turned into a sand simulat ..."
Abstract
-
Cited by 128 (4 self)
- Add to MetaCart
(Show Context)
My thesis presents a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes of sand, we abstract away the individual grains and think of the sand as a continuum. In particular we show that an existing water simulator can be turned into a sand simulator within frictional regime with only a few small additions to account for inter-grain and boundary friction, yet with visually acceptable result. We also propose an alternative method for simulating fluids. Our core representation is a cloud of particles, which allows for accurate and flexible surface tracking and advection, but we use an auxiliary grid to efficiently enforce boundary conditions and incompressibility. We further address the issue of reconstructing a surface from particle data to render each frame. ii Contents ii
Real-time subspace integration for St. Venant-Kirchhoff deformable models
- ACM Transactions on Graphics
, 2005
"... In this paper, we present an approach for fast subspace integration of reduced-coordinate nonlinear deformable models that is suitable for interactive applications in computer graphics and haptics. Our approach exploits dimensional model reduction to build reduced-coordinate deformable models for ob ..."
Abstract
-
Cited by 121 (13 self)
- Add to MetaCart
In this paper, we present an approach for fast subspace integration of reduced-coordinate nonlinear deformable models that is suitable for interactive applications in computer graphics and haptics. Our approach exploits dimensional model reduction to build reduced-coordinate deformable models for objects with complex geome-try. We exploit the fact that model reduction on large deforma-tion models with linear materials (as commonly used in graphics) result in internal force models that are simply cubic polynomials in reduced coordinates. Coefficients of these polynomials can be precomputed, for efficient runtime evaluation. This allows simula-tion of nonlinear dynamics using fast implicit Newmark subspace integrators, with subspace integration costs independent of geomet-ric complexity. We present two useful approaches for generating low-dimensional subspace bases: modal derivatives and an interac-tive sketching technique. Mass-scaled principal component analy-sis (mass-PCA) is suggested for dimensionality reduction. Finally, several examples are given from computer animation to illustrate high performance, including force-feedback haptic rendering of a complicated object undergoing large deformations.
A Virtual Node Algorithm for Changing Mesh Topology during Simulation
- ACM Trans. Graph. (SIGGRAPH Proc
, 2004
"... We propose a virtual node algorithm that allows material to separate along arbitrary (possibly branched) piecewise linear paths through a mesh. The material within an element is fragmented by creating several replicas of the element and assigning a portion of real material to each replica. This resu ..."
Abstract
-
Cited by 82 (6 self)
- Add to MetaCart
We propose a virtual node algorithm that allows material to separate along arbitrary (possibly branched) piecewise linear paths through a mesh. The material within an element is fragmented by creating several replicas of the element and assigning a portion of real material to each replica. This results in elements that contain both real material and empty regions. The missing material is contained in another copy (or copies) of this element. Our new virtual node algorithm automatically determines the number of replicas and the assignment of material to each. Moreover, it provides the degrees of freedom required to simulate the partially or fully fragmented material in a fashion consistent with the embedded geometry. This approach enables efficient simulation of complex geometry with a simple mesh, i.e. the geometry need not align itself with element boundaries. It also alleviates many shortcomings of traditional Lagrangian simulation techniques for meshes with changing topology. For example, slivers do not require small CFL time step restrictions since they are embedded in well shaped larger elements. To enable robust simulation of embedded geometry, we propose new algorithms for handling rigid body and self collisions. In addition, we present several mechanisms for influencing and controlling fracture with grain boundaries, prescoring, etc. We illustrate our method for both volumetric and thin-shell simulations.
Meshless animation of fracturing solids
- In Proceedings of SIGGRAPH’05 (2005
"... Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of ..."
Abstract
-
Cited by 81 (16 self)
- Add to MetaCart
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions
SOFA – an Open Source Framework for Medical Simulation
- In Medicine Meets Virtual Reality (MMVR 15
, 2007
"... Abstract. SOFA is a new open source framework primarily targeted at medical simulation research. Based on an advanced software architecture, it allows to (1) create complex and evolving simulations by combining new algorithms with algorithms already included in SOFA; (2) modify most parameters of th ..."
Abstract
-
Cited by 73 (27 self)
- Add to MetaCart
(Show Context)
Abstract. SOFA is a new open source framework primarily targeted at medical simulation research. Based on an advanced software architecture, it allows to (1) create complex and evolving simulations by combining new algorithms with algorithms already included in SOFA; (2) modify most parameters of the simulation – deformable
Adaptive Space Deformations Based on Rigid Cells
- COMPUT. GRAPH. FORUM
, 2007
"... We propose a new adaptive space deformation method for interactive shape modeling. A novel energy formulation based on elastically coupled volumetric cells yields intuitive detail preservation even under large deformations. By enforcing rigidity of the cells, we obtain an extremely robust numerical ..."
Abstract
-
Cited by 45 (7 self)
- Add to MetaCart
(Show Context)
We propose a new adaptive space deformation method for interactive shape modeling. A novel energy formulation based on elastically coupled volumetric cells yields intuitive detail preservation even under large deformations. By enforcing rigidity of the cells, we obtain an extremely robust numerical solver for the resulting nonlinear optimization problem. Scalability is achieved using an adaptive spatial discretization that is decoupled from the resolution of the embedded object. Our approach is versatile and easy to implement, supports thin-shell and solid deformations of 2D and 3D objects, and is applicable to arbitrary sample-based representations, such as meshes, triangle soups, or point clouds.
Fast viscoelastic behavior with thin features
- ACM Trans. Graph
, 2008
"... We introduce a method for efficiently animating a wide range of deformable materials. We combine a high resolution surface mesh with a tetrahedral finite element simulator that makes use of frequent re-meshing. This combination allows for fast and detailed simulations of complex elastic and plastic ..."
Abstract
-
Cited by 44 (6 self)
- Add to MetaCart
We introduce a method for efficiently animating a wide range of deformable materials. We combine a high resolution surface mesh with a tetrahedral finite element simulator that makes use of frequent re-meshing. This combination allows for fast and detailed simulations of complex elastic and plastic behavior. We significantly expand the range of physical parameters that can be simulated with a single technique, and the results are free from common artifacts such as volume-loss, smoothing, popping, and the absence of thin features like strands and sheets. Our decision to couple a high resolution surface with low-resolution physics leads to efficient simulation and detailed surface features, and our approach to creating the tetrahedral mesh leads to an order-of-magnitude speedup over previous techniques in the time spent re-meshing. We compute masses, collisions, and surface tension forces on the scale of the fine mesh, which helps avoid visual artifacts due to the differing mesh resolutions. The result is a method that can simulate a large array of different material behaviors with high resolution features in a short amount of time.
CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects
- IN PROC. ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION
, 2007
"... Simulating one-dimensional elastic objects such as threads, ropes or hair strands is a difficult problem, especially if material torsion is considered. In this paper, we present CORDE(french ’rope’), a novel deformation model for the dynamic interactive simulation of elastic rods with torsion. We de ..."
Abstract
-
Cited by 39 (2 self)
- Add to MetaCart
(Show Context)
Simulating one-dimensional elastic objects such as threads, ropes or hair strands is a difficult problem, especially if material torsion is considered. In this paper, we present CORDE(french ’rope’), a novel deformation model for the dynamic interactive simulation of elastic rods with torsion. We derive continuous energies for a dynamically deforming rod based on the Cosserat theory of elastic rods. We then discretize the rod and compute energies per element by employing finite element methods. Thus, the global dynamic behavior is independent of the discretization. The dynamic evolution of the rod is obtained by numerical integration of the resulting Lagrange equations of motion. We further show how this system of equations can be decoupled and efficiently solved. Since the centerline of the rod is explicitly represented, the deformation model allows for accurate contact and self-contact handling. Thus, we can reproduce many important looping phenomena. Further, a broad variety of different materials can be simulated at interactive rates. Experiments underline the physical plausibility of our deformation model.