Results 1 - 10
of
943
Automatic labeling of semantic roles
- Computational Linguistics
, 2002
"... We present a system for identifying the semantic relationships, or semantic roles, filled by constituents of a sentence within a semantic frame. Various lexical and syntactic features are derived from parse trees and used to derive statistical classifiers from hand-annotated training data. 1 ..."
Abstract
-
Cited by 747 (15 self)
- Add to MetaCart
We present a system for identifying the semantic relationships, or semantic roles, filled by constituents of a sentence within a semantic frame. Various lexical and syntactic features are derived from parse trees and used to derive statistical classifiers from hand-annotated training data. 1
Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews
, 2003
"... The web contains a wealth of product reviews, but sifting through them is a daunting task. Ideally, an opinion mining tool would process a set of search results for a given item, generating a list of product attributes (quality, features, etc.) and aggregating opinions about each of them (poor, mixe ..."
Abstract
-
Cited by 453 (0 self)
- Add to MetaCart
The web contains a wealth of product reviews, but sifting through them is a daunting task. Ideally, an opinion mining tool would process a set of search results for a given item, generating a list of product attributes (quality, features, etc.) and aggregating opinions about each of them (poor, mixed, good). We begin by identifying the unique properties of this problem and develop a method for automatically distinguishing between positive and negative reviews. Our classifier draws on information retrieval techniques for feature extraction and scoring, and the results for various metrics and heuristics vary depending on the testing situation. The best methods work as well as or better than traditional machine learning. When operating on individual sentences collected from web searches, performance is limited due to noise and ambiguity. But in the context of a complete web-based tool and aided by a simple method for grouping sentences into attributes, the results are qualitatively quite useful.
From frequency to meaning : Vector space models of semantics
- Journal of Artificial Intelligence Research
, 2010
"... Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are begi ..."
Abstract
-
Cited by 347 (3 self)
- Add to MetaCart
(Show Context)
Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term–document, word–context, and pair–pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field. 1.
Evaluating WordNet-based measures of lexical semantic relatedness
- Computational Linguistics
, 2006
"... The quantification of lexical semantic relatedness has many applications in NLP, and many different measures have been proposed. We evaluate five of these measures, all of which use WordNet as their central resource, by comparing their performance in detecting and correcting real-word spelling error ..."
Abstract
-
Cited by 321 (0 self)
- Add to MetaCart
(Show Context)
The quantification of lexical semantic relatedness has many applications in NLP, and many different measures have been proposed. We evaluate five of these measures, all of which use WordNet as their central resource, by comparing their performance in detecting and correcting real-word spelling errors. An information-content–based measure proposed by Jiang and Conrath is found superior to those proposed by Hirst and St-Onge, Leacock and Chodorow, Lin, and Resnik. In addition, we explain why distributional similarity is not an adequate proxy for lexical semantic relatedness. 1.
Measures of Distributional Similarity
- In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics
, 1999
"... We study distributional similarity measures for the purpose of improving probability estimation for unseen cooccurrences. Our contributions are three-fold: an empirical comparison of a broad range of measures; a classification of similarity functions based on the information that they incorporate; a ..."
Abstract
-
Cited by 297 (2 self)
- Add to MetaCart
(Show Context)
We study distributional similarity measures for the purpose of improving probability estimation for unseen cooccurrences. Our contributions are three-fold: an empirical comparison of a broad range of measures; a classification of similarity functions based on the information that they incorporate; and the introduction of a novel function that is superior at evaluating potential proxy distributions.
Discovering Word Senses from Text.
- In Proceedings of the 8th ACM Conference on Knowledge Discovery and Data Mining (KDD-02),
, 2002
"... ..."
(Show Context)
Finding Parts in Very Large Corpora
, 1999
"... We present a method for extracting parts of objects from wholes (e.g. "speedometer" from "car"). Given a very large corpus our method finds part words with 55% accuracy for the top 50 words as ranked by the system. The part list could be scanned by an end-user and added to an exi ..."
Abstract
-
Cited by 277 (1 self)
- Add to MetaCart
We present a method for extracting parts of objects from wholes (e.g. "speedometer" from "car"). Given a very large corpus our method finds part words with 55% accuracy for the top 50 words as ranked by the system. The part list could be scanned by an end-user and added to an existing ontology (such as WordNet), or used as a part of a rough semantic lexicon.
Mining the Web for Synonyms: PMI-IR Versus LSA on TOEFL
, 2001
"... This paper presents a simple unsupervised learning algorithm for recognizing synonyms, based on statistical data acquired by querying a Web search engine. The algorithm, called PMI-IR, uses Pointwise Mutual Information (PMI) and Information Retrieval (IR) to measure the similarity of pairs of wo ..."
Abstract
-
Cited by 262 (13 self)
- Add to MetaCart
This paper presents a simple unsupervised learning algorithm for recognizing synonyms, based on statistical data acquired by querying a Web search engine. The algorithm, called PMI-IR, uses Pointwise Mutual Information (PMI) and Information Retrieval (IR) to measure the similarity of pairs of words. PMI-IR is empirically evaluated using 80 synonym test questions from the Test of English as a Foreign Language (TOEFL) and 50 synonym test questions from a collection of tests for students of English as a Second Language (ESL). On both tests, the algorithm obtains a score of 74%. PMI-IR is contrasted with Latent Semantic Analysis (LSA), which achieves a score of 64% on the same 80 TOEFL questions. The paper discusses potential applications of the new unsupervised learning algorithm and some implications of the results for LSA and LSI (Latent Semantic Indexing).
Learning to Paraphrase: An Unsupervised Approach Using Multiple-Sequence Alignment
, 2003
"... We address the text-to-text generation problem of sentence-level paraphrasing --- a phenomenon distinct from and more difficult than word- or phrase-level paraphrasing. Our approach applies multiple-sequence alignment to sentences gathered from unannotated comparable corpora: it learns a set of para ..."
Abstract
-
Cited by 258 (2 self)
- Add to MetaCart
(Show Context)
We address the text-to-text generation problem of sentence-level paraphrasing --- a phenomenon distinct from and more difficult than word- or phrase-level paraphrasing. Our approach applies multiple-sequence alignment to sentences gathered from unannotated comparable corpora: it learns a set of paraphrasing patterns represented by word lattice pairs and automatically determines how to apply these patterns to rewrite new sentences. The results of our evaluation experiments show that the system derives accurate paraphrases, outperforming baseline systems.
Extracting paraphrases from a parallel corpus
- In Proc. of the ACL/EACL
, 2001
"... While paraphrasing is critical both for interpretation and generation of natural language, current systems use manual or semi-automatic methods to collect paraphrases. We present an unsupervised learning algorithm for identification of paraphrases from a corpus of multiple English translations of th ..."
Abstract
-
Cited by 252 (6 self)
- Add to MetaCart
(Show Context)
While paraphrasing is critical both for interpretation and generation of natural language, current systems use manual or semi-automatic methods to collect paraphrases. We present an unsupervised learning algorithm for identification of paraphrases from a corpus of multiple English translations of the same source text. Our approach yields phrasal and single word lexical paraphrases as well as syntactic paraphrases. 1