Results 1 - 10
of
315
LabelMe: A Database and Web-Based Tool for Image Annotation
, 2008
"... We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sha ..."
Abstract
-
Cited by 679 (46 self)
- Add to MetaCart
(Show Context)
We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sharing of such annotations. Using this annotation tool, we have collected a large dataset that spans many object categories, often containing multiple instances over a wide variety of images. We quantify the contents of the dataset and compare against existing state of the art datasets used for object recognition and detection. Also, we show how to extend the dataset to automatically enhance object labels with WordNet, discover object parts, recover a depth ordering of objects in a scene, and increase the number of labels using minimal user supervision and images from the web.
Robust Higher Order Potentials for Enforcing Label Consistency
, 2009
"... This paper proposes a novel framework for labelling problems which is able to combine multiple segmentations in a principled manner. Our method is based on higher order conditional random fields and uses potentials defined on sets of pixels (image segments) generated using unsupervised segmentation ..."
Abstract
-
Cited by 259 (34 self)
- Add to MetaCart
This paper proposes a novel framework for labelling problems which is able to combine multiple segmentations in a principled manner. Our method is based on higher order conditional random fields and uses potentials defined on sets of pixels (image segments) generated using unsupervised segmentation algorithms. These potentials enforce label consistency in image regions and can be seen as a generalization of the commonly used pairwise contrast sensitive smoothness potentials. The higher order potential functions used in our framework take the form of the Robust P n model and are more general than the P n Potts model recently proposed by Kohli et al. We prove that the optimal swap and expansion moves for energy functions composed of these potentials can be computed by solving a stmincut problem. This enables the use of powerful graph cut based move making algorithms for performing inference in the framework. We test our method on the problem of multi-class object segmentation by augmenting the conventional CRF used for object segmentation with higher order potentials defined on image regions. Experiments on challenging data sets show that integration of higher order potentials quantitatively and qualitatively improves results leading to much better definition of object boundaries. We
Decomposing a Scene into Geometric and Semantically Consistent Regions
"... High-level, or holistic, scene understanding involves reasoning about objects, regions, and the 3D relationships between them. This requires a representation above the level of pixels that can be endowed with high-level attributes such as class of object/region, its orientation, and (rough 3D) locat ..."
Abstract
-
Cited by 174 (11 self)
- Add to MetaCart
(Show Context)
High-level, or holistic, scene understanding involves reasoning about objects, regions, and the 3D relationships between them. This requires a representation above the level of pixels that can be endowed with high-level attributes such as class of object/region, its orientation, and (rough 3D) location within the scene. Towards this goal, we propose a region-based model which combines appearance and scene geometry to automatically decompose a scene into semantically meaningful regions. Our model is defined in terms of a unified energy function over scene appearance and structure. We show how this energy function can be learned from data and present an efficient inference technique that makes use of multiple over-segmentations of the image to propose moves in the energy-space. We show, experimentally, that our method achieves state-of-the-art performance on the tasks of both multi-class image segmentation and geometric reasoning. Finally, by understanding region classes and geometry, we show how our model can be used as the basis for 3D reconstruction of the scene. 1.
Associative hierarchical CRFs for object class image segmentation
- in Proc. ICCV
, 2009
"... Most methods for object class segmentation are formulated as a labelling problem over a single choice of quantisation of an image space- pixels, segments or group of segments. It is well known that each quantisation has its fair share of pros and cons; and the existence of a common optimal quantisat ..."
Abstract
-
Cited by 172 (25 self)
- Add to MetaCart
(Show Context)
Most methods for object class segmentation are formulated as a labelling problem over a single choice of quantisation of an image space- pixels, segments or group of segments. It is well known that each quantisation has its fair share of pros and cons; and the existence of a common optimal quantisation level suitable for all object categories is highly unlikely. Motivated by this observation, we propose a hierarchical random field model, that allows integration of features computed at different levels of the quantisation hierarchy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalises much of the previous work based on pixels or segments. We evaluate its efficiency on some of the most challenging data-sets for object class segmentation, and show it obtains state-of-the-art results. 1.
V.: What is an object
, 2010
"... We present a generic objectness measure, quantifying how likely it is for an image window to contain an object of any class. We explicitly train it to distinguish objects with a well-defined boundary in space, such as cows and telephones, from amorphous background elements, such as grass and road. T ..."
Abstract
-
Cited by 172 (15 self)
- Add to MetaCart
(Show Context)
We present a generic objectness measure, quantifying how likely it is for an image window to contain an object of any class. We explicitly train it to distinguish objects with a well-defined boundary in space, such as cows and telephones, from amorphous background elements, such as grass and road. The measure combines in a Bayesian framework several image cues measuring characteristics of objects, such as appearing different from their surroundings and having a closed boundary. This includes an innovative cue measuring the closed boundary characteristic. In experiments on the challenging PASCAL VOC 07 dataset, we show this new cue to outperform a state-of-the-art saliency measure [17], and the combined measure to perform better than any cue alone. Finally, we show how to sample windows from an image according to their objectness distribution and give an algorithm to employ them as location priors for modern class-specific object detectors. In experiments on PASCAL VOC 07 we show this greatly reduces the number of windows evaluated by class-specific object detectors. 1.
Segmentation as Selective Search for Object Recognition
"... For object recognition, the current state-of-the-art is based on exhaustive search. However, to enable the use of more expensive features and classifiers and thereby progress beyond the state-of-the-art, a selective search strategy is needed. Therefore, we adapt segmentation as a selective search by ..."
Abstract
-
Cited by 165 (7 self)
- Add to MetaCart
For object recognition, the current state-of-the-art is based on exhaustive search. However, to enable the use of more expensive features and classifiers and thereby progress beyond the state-of-the-art, a selective search strategy is needed. Therefore, we adapt segmentation as a selective search by reconsidering segmentation: We propose to generate many approximate locations over few and precise object delineations because (1) an object whose location is never generated can not be recognised and (2) appearance and immediate nearby context are most effective for object recognition. Our method is class-independent and is shown to cover 96.7 % of all objects in the Pascal VOC 2007 test set using only 1,536 locations per image. Our selective search enables the use of the more expensive bag-of-words method which we use to substantially improve the state-of-the-art by up to 8.5 % for 8 out of 20 classes on the Pascal VOC 2010 detection challenge.
Spatially coherent latent topic model for concurrent object segmentation and classification
- IN: PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION
, 2007
"... We present a novel generative model for simultaneously recognizing and segmenting object and scene classes. Our model is inspired by the traditional bag of words representation of texts and images as well as a number of related generative models, including probabilistic Latent Sematic Analysis (pL ..."
Abstract
-
Cited by 150 (3 self)
- Add to MetaCart
(Show Context)
We present a novel generative model for simultaneously recognizing and segmenting object and scene classes. Our model is inspired by the traditional bag of words representation of texts and images as well as a number of related generative models, including probabilistic Latent Sematic Analysis (pLSA) and Latent Dirichlet Allocation (LDA). A major drawback of the pLSA and LDA models is the assumption that each patch in the image is independently generated given its corresponding latent topic. While such representation provide an efficient computational method, it lacks the power to describe the visually coherent images and scenes. Instead, we propose a spatially coherent latent topic model (Spatial-LTM). Spatial-LTM represents an image containing objects in a hierarchical way by oversegmented image regions of homogeneous appearances and the salient image patches within the regions. Only one single latent topic is assigned to the image patches within each region, enforcing the spatial coherency of the model. This idea gives rise to the following merits of Spatial-LTM: (1) Spatial-LTM provides a unified representation for spatially coherent bag of words topic models; (2) Spatial-LTM can simultaneously segment and classify objects, even in the case of occlusion and multiple instances; and (3) Spatial-LTM can be trained either unsupervised or supervised, as well as when partial object labels are provided. We verify the success of our model in a number of segmentation and classification experiments. E. Coherent regions for
Simultaneous Image Classification and Annotation
"... Image classification and annotation are important problems in computer vision, but rarely considered together. Intuitively, annotations provide evidence for the class label, and the class label provides evidence for annotations. For example, an image of class highway is more likely annotated with wo ..."
Abstract
-
Cited by 148 (7 self)
- Add to MetaCart
(Show Context)
Image classification and annotation are important problems in computer vision, but rarely considered together. Intuitively, annotations provide evidence for the class label, and the class label provides evidence for annotations. For example, an image of class highway is more likely annotated with words “road, ” “car, ” and “traffic ” than words “fish, ” “boat, ” and “scuba. ” In this paper, we develop a new probabilistic model for jointly modeling the image, its class label, and its annotations. Our model treats the class label as a global description of the image, and treats annotation terms as local descriptions of parts of the image. Its underlying probabilistic assumptions naturally integrate these two sources of information. We derive an approximate inference and estimation algorithms based on variational methods, as well as efficient approximations for classifying and annotating new images. We examine the performance of our model on two real-world image data sets, illustrating that a single model provides competitive annotation performance, and superior classification performance. 1.
Constrained Parametric Min-Cuts for Automatic Object Segmentation
, 2010
"... We present a novel framework for generating and rankingplausibleobjectshypothesesin animage using bottom-up processes and mid-level cues. The object hypotheses arerepresented as figure-ground segmentations, and are extracted automatically, withoutpriorknowledgeabout properties of individual object c ..."
Abstract
-
Cited by 123 (11 self)
- Add to MetaCart
(Show Context)
We present a novel framework for generating and rankingplausibleobjectshypothesesin animage using bottom-up processes and mid-level cues. The object hypotheses arerepresented as figure-ground segmentations, and are extracted automatically, withoutpriorknowledgeabout properties of individual object classes, by solving a sequence of constrained parametric min-cut problems (CPMC) on a regular image grid. We then learn to rank the object hypotheses by training a continuous model to predict how plausible the segments are, given their mid-level region properties. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC09 segmentation dataset. It achieves the same average best segmentation covering as the best performing technique to date [2], 0.61 when using just the top 7 ranked segments, instead of the full hierarchy in [2]. Our methodachieves0.78averagebest covering using 154 segments. In a companion paper [18], we also show that the algorithm achieves state-of-the art results when used in a segmentation-based recognition pipeline.