Results 1 - 10
of
65
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
- IEEE J. SEL. TOPICS APPL. EARTH OBSERV. REMOTE SENS
, 2012
"... Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher sp ..."
Abstract
-
Cited by 103 (34 self)
- Add to MetaCart
Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed
Segmentation and classification of hyperspectral images using watershed transformation
, 2010
"... Hyperspectral imaging, which records a detailed spectrum of light for each pixel, provides an invaluable source of information regarding the physical nature of the different materials, leading to the potential of a more accurate classification. However, high dimensionality of hyperspectral data, usu ..."
Abstract
-
Cited by 33 (8 self)
- Add to MetaCart
Hyperspectral imaging, which records a detailed spectrum of light for each pixel, provides an invaluable source of information regarding the physical nature of the different materials, leading to the potential of a more accurate classification. However, high dimensionality of hyperspectral data, usually coupled with limited reference data available, limits the performances of supervised classification techniques. The commonly used pixel-wise classification lacks information about spatial structures of the image. In order to increase classification performances, integration of spatial information into the classification process is needed. In this paper, we propose to extend the watershed segmentation algorithm for hyperspectral images, in order to define information about spatial structures. In particular, several approaches to compute a one-band gradient function from hyperspectral images are proposed and investigated. The accuracy of the watershed algorithms is demonstrated by the further incorporation of the segmentation maps into a classifier. A new spectral-spatial classification scheme for hyperspectral images is proposed, based on the pixel-wise Support Vector Machines classification, followed by majority voting within the watershed regions. Experimental segmentation and classification results are presented on two hyperspectral images. It is shown in experiments that when the number of spectral bands increases, the feature extraction and the use of multidimen-
Hyperspectral Image Classification Using Dictionary-Based . . .
- IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
, 2011
"... A new sparsity-based algorithm for the classification of hyperspectral imagery is proposed in this paper. The proposed algorithm relies on the observation that a hyperspectral pixel can be sparsely represented by a linear combination of a few training samples from a structured dictionary. The spars ..."
Abstract
-
Cited by 29 (5 self)
- Add to MetaCart
A new sparsity-based algorithm for the classification of hyperspectral imagery is proposed in this paper. The proposed algorithm relies on the observation that a hyperspectral pixel can be sparsely represented by a linear combination of a few training samples from a structured dictionary. The sparse representation of an unknown pixel is expressed as a sparse vector whose nonzero entries correspond to the weights of the selected training samples. The sparse vector is recovered by solving a sparsity-constrained optimization problem, and it can directly determine the class label of the test sample. Two different approaches are proposed to incorporate the contextual information into the sparse recovery optimization problem in order to improve the classification performance. In the first approach, an explicit smoothing constraint is imposed on the problem formulation by forcing the vector Laplacian of the reconstructed image to become zero. In this approach, the reconstructed pixel of interest has similar spectral characteristics to its four nearest neighbors. The second approach is via a joint sparsity model where hyperspectral pixels in a small neighborhood around the test pixel are simultaneously represented by linear combinations of a few common training samples, which are weighted with a different set of coefficients for each pixel. The proposed sparsity-based algorithm is applied to several real hyperspectral images for classification. Experimental results show that our algorithm outperforms the classical supervised classifier support vector machines in most cases.
Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
- IEEE TRANS. GEOSCI. REMOTE SENS
, 2012
"... This paper introduces a new supervised segmentation algorithm for remotely sensed hyperspectral image data which integrates the spectral and spatial information in a Bayesian framework. A multinomial logistic regression (MLR) algorithm is first used to learn the posterior probability distributions f ..."
Abstract
-
Cited by 25 (7 self)
- Add to MetaCart
(Show Context)
This paper introduces a new supervised segmentation algorithm for remotely sensed hyperspectral image data which integrates the spectral and spatial information in a Bayesian framework. A multinomial logistic regression (MLR) algorithm is first used to learn the posterior probability distributions from the spectral information, using a subspace projection method to better characterize noise and highly mixed pixels. Then, contextual information is included using a multilevel logistic Markov–Gibbs Markov random field prior. Finally, a maximum a posteriori segmentation is efficiently computed by the α-Expansion mincut-based integer optimization algorithm. The proposed segmentation approach is experimentally evaluated using both simulated and real hyperspectral data sets, exhibiting state-of-the-art performance when compared with recently introduced hyperspectral image classification methods. The integration of subspace projection methods with the MLR algorithm, combined with the use of spatial–contextual information, represents an innovative contribution in the literature. This approach is shown to provide accurate characterization of hyperspectral imagery in both the spectral and the spatial domain.
Multiple spectral-spatial classification approach for hyperspectral data
- IEEE TRANS. ON GEOSCIENCE AND REMOTE SENSING
, 2010
"... A new multiple-classifier approach for spectral– spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a se ..."
Abstract
-
Cited by 17 (9 self)
- Add to MetaCart
A new multiple-classifier approach for spectral– spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region with a corresponding class label. We propose to use spectral–spatial classifiers at the preliminary step of the marker-selection procedure, each of them combining the results of a pixelwise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification-driven marker and forms a region in the spectral–spatial classification map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies when compared with previously proposed classification techniques.
Hyperspectral Image Classification via Kernel Sparse Representation
"... In this paper, a novel nonlinear technique for hyperspectral image classification is proposed. Our approach relies on sparsely representing a test sample in terms of all of the training samples in a feature space induced by a kernel function. For each test pixel in the feature space, a sparse repres ..."
Abstract
-
Cited by 13 (1 self)
- Add to MetaCart
In this paper, a novel nonlinear technique for hyperspectral image classification is proposed. Our approach relies on sparsely representing a test sample in terms of all of the training samples in a feature space induced by a kernel function. For each test pixel in the feature space, a sparse representation vector is obtained by decomposing the test pixel over a training dictionary, also in the same feature space, by using a kernel-based greedy pursuit algorithm. The recovered sparse representation vector is then used directly to determine the class label of the test pixel. Projecting the samples into a high-dimensional feature space and kernelizing the sparse representation improves the data separability between different classes, providing a higher classification accuracy compared to the more conventional linear sparsity-based classification algorithms. Moreover, the spatial coherency across neighboring pixels is also incorporated through a kernelized joint sparsity model, where all of the pixels within a small neighborhood are jointly represented in the feature space by selecting a few common training samples. Kernel greedy optimization algorithms are suggested in this paper to solve the kernel versions of the single-pixel and multi-pixel joint sparsity-based recovery problems. Experimental results on several hyperspectral images show that the proposed technique outperforms the linear sparsity-based classification technique, as well as the classical Support Vector Machines and sparse kernel logistic regression classifiers.
Nearest Regularized Subspace for Hyperspectral Classification
- IEEE Transactions on Geoscience and Remote Sensing, Submitted April 2012. Revised
, 2012
"... Abstract—A classifier that couples nearest-subspace classification with a distance-weighted Tikhonov regularization is proposed for hyperspectral imagery. The resulting nearest-regularizedsubspace classifier seeks an approximation of each testing sample via a linear combination of training samples w ..."
Abstract
-
Cited by 11 (10 self)
- Add to MetaCart
(Show Context)
Abstract—A classifier that couples nearest-subspace classification with a distance-weighted Tikhonov regularization is proposed for hyperspectral imagery. The resulting nearest-regularizedsubspace classifier seeks an approximation of each testing sample via a linear combination of training samples within each class. The class label is then derived according to the class which best approximates the test sample. The distance-weighted Tikhonov regularization is then modified by measuring distance within a locality-preserving lower-dimensional subspace. Furthermore, a competitive process among the classes is proposed to simplify parameter tuning. Classification results for several hyperspectral image data sets demonstrate superior performance of the proposed approach when compared to other, more traditional classification techniques. Index Terms—Classification, hyperspectral data, Tikhonov regularization. I.
A marker-based approach for the automated selection of a single segmentation from a hierarchical set of image segmentations
- IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
, 2012
"... The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a s ..."
Abstract
-
Cited by 10 (4 self)
- Add to MetaCart
(Show Context)
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyper-spectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
Hyperspectral image representation and processing with binary partition trees
- IJCATM : www.ijcaonline.org
, 2013
"... Abstract — The optimal exploitation of the information provided by hyperspectral images requires the development of advanced image-processing tools. This paper proposes the construction and the processing of a new region-based hierarchical hyperspectral image representation relying on the binary par ..."
Abstract
-
Cited by 9 (4 self)
- Add to MetaCart
(Show Context)
Abstract — The optimal exploitation of the information provided by hyperspectral images requires the development of advanced image-processing tools. This paper proposes the construction and the processing of a new region-based hierarchical hyperspectral image representation relying on the binary partition tree (BPT). This hierarchical region-based representation can be interpreted as a set of hierarchical regions stored in a tree structure. Hence, the BPT succeeds in presenting: 1) the decomposition of the image in terms of coherent regions, and 2) the inclusion relations of the regions in the scene. Based on region-merging techniques, the BPT construction is investigated by studying the hyperspectral region models and the associated similarity metrics. Once the BPT is constructed, the fixed tree structure allows implementing efficient and advanced application-dependent techniques on it. The application-dependent processing of BPT is generally implemented through a specific pruning of the tree. In this paper, a pruning strategy is proposed and discussed in a classification context. Experimental results on various hyperspectral data sets demonstrate the interest and the good performances of the BPT representation. Index Terms — Binary partition tree, classification, hyperspectral imaging, segmentation.
Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
- IEEE Signal Processing Magazine
, 2014
"... The technological evolution of optical sensors over the last few decades has provided remote sensing analysts with rich spatial, spectral, and temporal information. In particular, the increase in spectral resolution of hyperspectral images ..."
Abstract
-
Cited by 8 (3 self)
- Add to MetaCart
(Show Context)
The technological evolution of optical sensors over the last few decades has provided remote sensing analysts with rich spatial, spectral, and temporal information. In particular, the increase in spectral resolution of hyperspectral images