Results 1 - 10
of
353
Text Classification from Labeled and Unlabeled Documents using EM
- MACHINE LEARNING
, 1999
"... This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large qua ..."
Abstract
-
Cited by 1033 (15 self)
- Add to MetaCart
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. We introduce an algorithm for learning from labeled and unlabeled documents based on the combination of Expectation-Maximization (EM) and a naive Bayes classifier. The algorithm first trains a classifier using the available labeled documents, and probabilistically labels the unlabeled documents. It then trains a new classifier using the labels for all the documents, and iterates to convergence. This basic EM procedure works well when the data conform to the generative assumptions of the model. However these assumptions are often violated in practice, and poor performance can result. We present two extensions to the algorithm that improve ...
On the optimality of the simple Bayesian classifier under zero-one loss
- MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract
-
Cited by 818 (27 self)
- Add to MetaCart
The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zero-one loss (misclassification rate) even when this assumption is violated by a wide margin. The region of quadratic-loss optimality of the Bayesian classifier is in fact a second-order infinitesimal fraction of the region of zero-one optimality. This implies that the Bayesian classifier has a much greater range of applicability than previously thought. For example, in this article it is shown to be optimal for learning conjunctions and disjunctions, even though they violate the independence assumption. Further, studies in artificial domains show that it will often outperform more powerful classifiers for common training set sizes and numbers of attributes, even if its bias is a priori much less appropriate to the domain. This article’s results also imply that detecting attribute dependence is not necessarily the best way to extend the Bayesian classifier, and this is also verified empirically.
Learning to Extract Symbolic Knowledge from the World Wide Web
, 1998
"... The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable world wide knowledge base whose content mirrors that of the World Wide Web. Such a ..."
Abstract
-
Cited by 403 (29 self)
- Add to MetaCart
(Show Context)
The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable world wide knowledge base whose content mirrors that of the World Wide Web. Such a
Learning and Revising User Profiles: The Identification of Interesting Web Sites
- Machine Learning
, 1997
"... . We discuss algorithms for learning and revising user profiles that can determine which World Wide Web sites on a given topic would be interesting to a user. We describe the use of a naive Bayesian classifier for this task, and demonstrate that it can incrementally learn profiles from user feedback ..."
Abstract
-
Cited by 384 (15 self)
- Add to MetaCart
(Show Context)
. We discuss algorithms for learning and revising user profiles that can determine which World Wide Web sites on a given topic would be interesting to a user. We describe the use of a naive Bayesian classifier for this task, and demonstrate that it can incrementally learn profiles from user feedback on the interestingness of Web sites. Furthermore, the Bayesian classifier may easily be extended to revise user provided profiles. In an experimental evaluation we compare the Bayesian classifier to computationally more intensive alternatives, and show that it performs at least as well as these approaches throughout a range of different domains. In addition, we empirically analyze the effects of providing the classifier with background knowledge in form of user defined profiles and examine the use of lexical knowledge for feature selection. We find that both approaches can substantially increase the prediction accuracy. Keywords: Information filtering, intelligent agents, multistrategy lea...
Mining: Information and Pattern Discovery on the World Wide Web
- In: Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence (ICTAI
, 1997
"... Application of data mining techniques to the World Wide Web, referred to as Web mining, has been the focus of several recent research projects and papers. However, there is no established vocabulary, leading to confusion when comparing research efforts. The term Web mining has been used in two disti ..."
Abstract
-
Cited by 372 (21 self)
- Add to MetaCart
Application of data mining techniques to the World Wide Web, referred to as Web mining, has been the focus of several recent research projects and papers. However, there is no established vocabulary, leading to confusion when comparing research efforts. The term Web mining has been used in two distinct ways. The first, called Web content mining in this paper, is the process of information discovery from sources across the World Wide Web. The second, called Web mage mining, is the process of mining for user browsing and access patterns. In this paper we define Web mining and present an overview of the various research issues, techniques, and development efforts. We briefly describe WEBMINER, a system for Web usage mining, and conclude this paper by listing research issues. 1
WebWatcher: A Tour Guide for the World Wide Web
- PROCEEDINGS OF IJCAI97
, 1997
"... We explore the notion of a tour guide software agent for assisting users browsing the World Wide Web. A Web tour guide agent provides assistance similar to that provided by ahuman tour guide in a museum -- it guides the user along an appropriate path through the collection, based on its knowledge of ..."
Abstract
-
Cited by 359 (8 self)
- Add to MetaCart
We explore the notion of a tour guide software agent for assisting users browsing the World Wide Web. A Web tour guide agent provides assistance similar to that provided by ahuman tour guide in a museum -- it guides the user along an appropriate path through the collection, based on its knowledge of the user's interests, of the location and relevance of various items in the collection, and of the way in which others have interacted with the collection in the past. This paper describes a simple but operational tour guide, called Web-Watcher, which has given over 5000 tours to people browsing CMU's School of Computer Science Web pages. WebWatcher accompanies users from page to page, suggests appropriate hyperlinks, and learns from experience to improve its advice-giving skills. We describe the learning algorithms used by WebWatcher, experimental results showing their effectiveness, and lessons learned from this case study in Web tour guide agents.
Recommendation as Classification: Using Social and Content-Based Information in Recommendation
- In Proceedings of the Fifteenth National Conference on Artificial Intelligence
, 1998
"... Recommendation systems make suggestions about artifacts to a user. For instance, they may predict whether a user would be interested in seeing a particular movie. Social recomendation methods collect ratings of artifacts from many individuals and use nearest-neighbor techniques to make recommendatio ..."
Abstract
-
Cited by 342 (8 self)
- Add to MetaCart
Recommendation systems make suggestions about artifacts to a user. For instance, they may predict whether a user would be interested in seeing a particular movie. Social recomendation methods collect ratings of artifacts from many individuals and use nearest-neighbor techniques to make recommendations to a user concerning new artifacts. However, these methods do not use the significant amount of other information that is often available about the nature of each artifact --- such as cast lists or movie reviews, for example. This paper presents an inductive learning approach to recommendation that is able to use both ratings information and other forms of information about each artifact in predicting user preferences. We show that our method outperforms an existing social-filtering method in the domain of movie recommendations on a dataset of more than 45,000 movie ratings collected from a community of over 250 users. Introduction Recommendations are a part of everyday life. We usually...
Content-Based Book Recommending Using Learning for Text Categorization
- IN PROCEEDINGS OF THE FIFTH ACM CONFERENCE ON DIGITAL LIBRARIES
, 1999
"... Recommender systems improve access to relevant products and information by making personalized suggestions based on previous examples of a user's likes and dislikes. Most existing recommender systems use collaborative filtering methods that base recommendations on other users' preferences. ..."
Abstract
-
Cited by 334 (8 self)
- Add to MetaCart
(Show Context)
Recommender systems improve access to relevant products and information by making personalized suggestions based on previous examples of a user's likes and dislikes. Most existing recommender systems use collaborative filtering methods that base recommendations on other users' preferences. By contrast, content-based methods use information about an item itself to make suggestions. This approach has the advantage of being able to recommend previously unrated items to users with unique interests and to provide explanations for its recommendations. We describe a content-based book recommending system that utilizes information extraction and a machine-learning algorithm for text categorization. Initial experimental results demonstrate that this approach can produce accurate recommendations.
Learning to Construct Knowledge Bases from the World Wide Web
, 2000
"... The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable knowledge base whose content mirrors that of the World Wide Web. Such a knowledge base would ena ..."
Abstract
-
Cited by 242 (5 self)
- Add to MetaCart
(Show Context)
The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable knowledge base whose content mirrors that of the World Wide Web. Such a knowledge base would enable much more effective retrieval of Web information, and promote new uses of the Web to support knowledge-based inference and problem solving. Our approach is to develop a trainable information extraction system that takes two inputs. The first is an ontology that defines the classes (e.g., company, person, employee, product) and relations (e.g., employed_by, produced_by) of interest when creating the knowledge base. The second is a set of training data consisting of labeled regions of hypertext that represent instances of these classes and relations. Given these inputs, the system learns to extract information from other pages and hyperlinks on the Web. This article describes our general a...
WebMate: A Personal Agent for Browsing and Searching
- In Proceedings of the Second International Conference on Autonomous Agents
, 1998
"... The World-Wide Web is developing very fast. Currently, finding useful information on the Web is a time consuming process. In this paper, we present WebMate, an agent that helps users to effectively browse and search the Web. WebMate extends the state of the art in Web-based information retrieval in ..."
Abstract
-
Cited by 239 (10 self)
- Add to MetaCart
(Show Context)
The World-Wide Web is developing very fast. Currently, finding useful information on the Web is a time consuming process. In this paper, we present WebMate, an agent that helps users to effectively browse and search the Web. WebMate extends the state of the art in Web-based information retrieval in many ways. First, it uses multiple TF-IDF vectors to keep track of user interests in different domains. These domains are automatically learned by WebMate. Second, WebMate uses the Trigger Pair Model to automatically extract keywords for refining document search. Third, during search, the user can provide multiple pages as similarity/relevance guidance for the search. The system extracts and combines relevant keywords from these relevant pages and uses them for keyword refinement. Using these techniques, WebMate provides effective browsing and searching help and also compiles and sends to users personal newspaper by automatically spiding news sources. We have experimentally evaluated the per...