Results 11  20
of
1,113
Limits on the Provable Consequences of Oneway Permutations
, 1989
"... We present strong evidence that the implication, "if oneway permutations exist, then secure secret key agreement is possible" is not provable by standard techniques. Since both sides of this implication are widely believed true in real life, to show that the implication is false requir ..."
Abstract

Cited by 200 (0 self)
 Add to MetaCart
(Show Context)
We present strong evidence that the implication, "if oneway permutations exist, then secure secret key agreement is possible" is not provable by standard techniques. Since both sides of this implication are widely believed true in real life, to show that the implication is false requires a new model. We consider a world where dl parties have access to a black box or a randomly selected permutation. Being totally random, this permutation will be strongly oneway in provable, informationthevretic way. We show that, if P = NP, no protocol for secret key agreement is secure in such setting. Thus, to prove that a secret key greement protocol which uses a oneway permutation as a black box is secure is as hrd as proving F NP. We also obtain, as corollary, that there is an oracle relative to which the implication is false, i.e., there is a oneway permutation, yet secretexchange is impossible. Thus, no technique which relativizes can prove that secret exchange can be based on any oneway permutation. Our results present a general framework for proving statements of the form, "Cryptographic application X is not likely possible based solely on complexity assumption Y." 1
Quantum measurements and the Abelian stabilizer problem
"... We present a polynomial quantum algorithm for the Abelian stabilizer problem which includes both factoring and the discrete logarithm. Thus we extend famous Shor’s results [7]. Our method is based on a procedure for measuring an eigenvalue of a unitary operator. Another application of this procedure ..."
Abstract

Cited by 196 (0 self)
 Add to MetaCart
(Show Context)
We present a polynomial quantum algorithm for the Abelian stabilizer problem which includes both factoring and the discrete logarithm. Thus we extend famous Shor’s results [7]. Our method is based on a procedure for measuring an eigenvalue of a unitary operator. Another application of this procedure is a polynomial quantum Fourier transform algorithm for an arbitrary finite Abelian group. The paper also contains a rather detailed introduction to the theory of quantum computation.
TwoBit Gates Are Universal for Quantum Computation
, 1995
"... A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of threebit gates, by analogy to the universality of ..."
Abstract

Cited by 182 (9 self)
 Add to MetaCart
A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of threebit gates, by analogy to the universality of the Toffoli threebit gate of classical reversible computing. Twobit quantum gates may be implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A "gearbox quantum computer" proposed here, based on the principles of atomic force microscopy, would permit the operation of such twobit gates in a physical system with very long phase breaking (i.e., quantum phase coherence) times. Simpler versions of the gearbox computer could be used to do experiments on EinsteinPodolskyRosen states and related entangled quantum states.
Towards a quantum programming language
 Mathematical Structures in Computer Science
, 2004
"... The field of quantum computation suffers from a lack of syntax. In the absence of a convenient programming language, algorithms are frequently expressed in terms of hardware circuits or Turing machines. Neither approach particularly encourages structured programming or abstractions such as data type ..."
Abstract

Cited by 166 (15 self)
 Add to MetaCart
(Show Context)
The field of quantum computation suffers from a lack of syntax. In the absence of a convenient programming language, algorithms are frequently expressed in terms of hardware circuits or Turing machines. Neither approach particularly encourages structured programming or abstractions such as data types. In this paper, we describe the syntax and semantics of a simple quantum programming language. This language provides highlevel features such as loops, recursive procedures, and structured data types. It is statically typed, and it has an interesting denotational semantics in terms of complete partial orders of superoperators. 1
Reliable quantum computers
 Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
, 1998
"... The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mist ..."
Abstract

Cited by 165 (3 self)
 Add to MetaCart
(Show Context)
The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per quantum gate is less than a certain critical value, the accuracy threshold. A quantum computer storing about 106 qubits, with a probability of error per quantum gate of order 106, would be a formidable factoring engine. Even a smaller lessaccurate quantum computer would be able to perform many useful tasks. This paper is based on a talk presented at the ITP Conference on Quantum Coherence
Exponential Algorithmic Speedup by a Quantum Walk
"... We construct a black box graph traversal problem that can be solved exponentially faster on a quantum computer than on a classical computer. The quantum algorithm is based on a continuous time quantum walk, and thus employs a di#erent technique from previous quantum algorithms based on quantum Fouri ..."
Abstract

Cited by 158 (10 self)
 Add to MetaCart
We construct a black box graph traversal problem that can be solved exponentially faster on a quantum computer than on a classical computer. The quantum algorithm is based on a continuous time quantum walk, and thus employs a di#erent technique from previous quantum algorithms based on quantum Fourier transforms. We show how to implement the quantum walk e#ciently in our black box setting. We then show how this quantum walk solves our problem by rapidly traversing a graph. Finally, we prove that no classical algorithm can solve the problem in subexponential time.
From quantum cellular automata to quantum lattice gases
 Journal of Statistical Physics
, 1996
"... A natural architecture for nanoscale quantum computation is that of a quantum cellular automaton. Motivated by this observation, in this paper we begin an investigation of exactly unitary cellular automata. After proving that there can be no nontrivial, homogeneous, local, unitary, scalar cellular a ..."
Abstract

Cited by 152 (19 self)
 Add to MetaCart
(Show Context)
A natural architecture for nanoscale quantum computation is that of a quantum cellular automaton. Motivated by this observation, in this paper we begin an investigation of exactly unitary cellular automata. After proving that there can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in one dimension, we weaken the homogeneity condition and show that there are nontrivial, exactly unitary, partitioning cellular automata. We find a one parameter family of evolution rules which are best interpreted as those for a one particle quantum automaton. This model is naturally reformulated as a two component cellular automaton which we demonstrate to limit to the Dirac equation. We describe two generalizations of this automaton, the second of which, to multiple interacting particles, is the correct definition of a quantum lattice gas. KEY WORDS: quantum cellular automaton; quantum lattice gas; quantum computation. to appear in J. Stat. Phys.
Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance
, 2001
"... The number of steps any classical computer requires in order to find the prime factors of an ldigit integer N increases exponentially with l, at least using algorithms [1] known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying th ..."
Abstract

Cited by 150 (4 self)
 Add to MetaCart
The number of steps any classical computer requires in order to find the prime factors of an ldigit integer N increases exponentially with l, at least using algorithms [1] known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes [1, 2]. Quantum computers [3], however, could factor integers in only polynomial time, using Shor’s quantum factoring algorithm [4, 5, 6]. Although important for the study of quantum computers [7], experimental demonstration of this algorithm has proved elusive [8, 9, 10]. Here we report an implementation of the simplest instance of Shor’s algorithm: factorization of N=15 (whose prime factors are 3 and 5). We use seven spin1/2 nuclei in a molecule as quantum bits [11, 12], which can be manipulated with room temperature liquid state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to many quantum bit systems [13], but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum
Quantum circuits with mixed states
 in Proc. 30th STOC
, 1998
"... Current formal models for quantum computation deal only with unitary gates operating on “pure quantum states”. In these models it is difficult or impossible to deal formally with several central issues: measurements in the middle of the computation; decoherence and noise, using probabilistic subrout ..."
Abstract

Cited by 142 (7 self)
 Add to MetaCart
(Show Context)
Current formal models for quantum computation deal only with unitary gates operating on “pure quantum states”. In these models it is difficult or impossible to deal formally with several central issues: measurements in the middle of the computation; decoherence and noise, using probabilistic subroutines, and more. It turns out, that the restriction to unitary gates and pure states is unnecessary. In this paper we generalize the formal model of quantum circuits to a model in which the state can be a general quantum state, namely a mixed state, or a “density matrix”, and the gates can be general quantum operations, not necessarily unitary. The new model is shown to be equivalent in computational power to the standard one, and the problems mentioned above essentially disappear. The main result in this paper is a solution for the subroutine problem. The general function that a quantum circuit outputs is a probabilistic function. However, the question of using probabilistic functions as subroutines was not previously dealt with, the reason being that in the language of pure states, this simply can not be done. We define a natural notion of using general subroutines, and show that using general subroutines does not strengthen the model. As an example of the advantages of analyzing quantum complexity using density matrices, we prove a simple lower bound on depth of circuits that compute probabilistic functions. Finally, we deal with the question of inaccurate quantum computation with mixed states. Using the so called “trace metric ” on density matrices, we show how to keep track of errors in the new model.