Results 1 - 10
of
159
Social Network Analysis for Routing in Disconnected Delay-tolerant MANETs
, 2007
"... Message delivery in sparse Mobile Ad hoc Networks (MANETs) is difficult due to the fact that the network graph is rarely (if ever) connected. A key challenge is to find a route that can provide good delivery performance and low end-to-end delay in a disconnected network graph where nodes may move fr ..."
Abstract
-
Cited by 276 (1 self)
- Add to MetaCart
Message delivery in sparse Mobile Ad hoc Networks (MANETs) is difficult due to the fact that the network graph is rarely (if ever) connected. A key challenge is to find a route that can provide good delivery performance and low end-to-end delay in a disconnected network graph where nodes may move freely. This paper presents a multidisciplinary solution based on the consideration of the socalled small world dynamics which have been proposed for economy and social studies and have recently revealed to be a successful approach to be exploited for characterising information propagation in wireless networks. To this purpose, some bridge nodes are identified based on their centrality characteristics, i.e., on their capability to broker information exchange among otherwise disconnected nodes. Due to the complexity of the centrality metrics in populated networks the concept of ego networks is exploited where nodes are not required to exchange information about the entire network topology, but only locally available information is considered. Then SimBet Routing is proposed which exploits the exchange of pre-estimated ‘betweenness’ centrality metrics and locally determined social ‘similarity’ to the destination node. We present simulations using real trace data to demonstrate that SimBet Routing results in delivery performance close to Epidemic Routing but with significantly reduced overhead. Additionally, we show that Sim-Bet Routing outperforms PRoPHET Routing, particularly when the sending and receiving nodes have low connectivity.
Practical routing in delay-tolerant networks
- IEEE Transactions on Mobile Computing
"... Delay-tolerant networks (DTNs) have the potential to connect devices and areas of the world that are under-served by current networks. A critical challenge for DTNs is determining routes through the network without ever having an end-to-end connection, or even knowing which “routers ” will be connec ..."
Abstract
-
Cited by 137 (0 self)
- Add to MetaCart
(Show Context)
Delay-tolerant networks (DTNs) have the potential to connect devices and areas of the world that are under-served by current networks. A critical challenge for DTNs is determining routes through the network without ever having an end-to-end connection, or even knowing which “routers ” will be connected at any given time. Prior approaches have focused either on epidemic message replication or on knowledge of the connectivity schedule. The epidemic approach of replicating messages to all nodes is expensive and does not appear to scale well with increasing load. It can, however, operate without any prior network configuration. The alternatives, by requiring a priori connectivity knowledge, appear infeasible for a self-configuring network. In this paper we present a practical routing protocol that only uses observed information about the network. We designed a metric that estimates how long a message will have to wait before it can be transferred to the next hop. The topology is distributed using a link-state routing protocol, where the link-state packets are “flooded ” using epidemic routing. The routing is recomputed when connections are established. Messages are exchanged if the topology suggests that a connected node is “closer ” than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires a significantly smaller quantity of buffer, suggesting that our approach will scale with the number of messages in the network, where replication approaches may not.
DTN Routing in a Mobility Pattern Space
, 2005
"... Routing in delay tolerant networks (DTNs) benefits considerably if one can take advantage of knowledge concerning node mobility. The main contribution of this paper is the definition of a generic routing scheme for DTNs using a high-dimensional Euclidean space constructed upon nodes' mobility p ..."
Abstract
-
Cited by 118 (4 self)
- Add to MetaCart
Routing in delay tolerant networks (DTNs) benefits considerably if one can take advantage of knowledge concerning node mobility. The main contribution of this paper is the definition of a generic routing scheme for DTNs using a high-dimensional Euclidean space constructed upon nodes' mobility patterns. We call this the MobySpace. One way of representing nodes in this space is to give them coordinates that correspond to their probability of being found in each possible location. We present simulation results indicating that such a scheme can be beneficial in a scenario inspired by studies done on real mobility traces. This work should open the way to further use of the virtual space formalism in DTN routing.
Evaluating mobility pattern space routing for DTNs
, 2005
"... Because a delay tolerant network (DTN) can often be partitioned, the problem of routing is very challenging. However, routing benefits considerably if one can take advantage of knowledge concerning node mobility. This paper addresses this problem with a generic algorithm based on the use of a high-d ..."
Abstract
-
Cited by 110 (11 self)
- Add to MetaCart
(Show Context)
Because a delay tolerant network (DTN) can often be partitioned, the problem of routing is very challenging. However, routing benefits considerably if one can take advantage of knowledge concerning node mobility. This paper addresses this problem with a generic algorithm based on the use of a high-dimensional Euclidean space, that we call MobySpace, constructed upon nodes ’ mobility patterns. We provide here an analysis and the large scale evaluation of this routing scheme in the context of ambient networking by replaying real mobility traces. The specific MobySpace evaluated is based on the frequency of visit of nodes for each possible location. We show that the MobySpace can achieve good performance compared to that of the other algorithms we implemented, especially when we perform routing on the nodes that have a high connection time. We determine that the degree of homogeneity of mobility patterns of nodes has a high impact on routing. And finally, we study the ability of nodes to learn their own mobility patterns.
A community based mobility model for ad hoc network research
- in Proceedings of ACM REALMAN
, 2006
"... Validation of mobile ad hoc network protocols relies almost exclusively on simulation. The value of the validation is, therefore, highly dependent on how realistic the movement models used in the simulations are. Since there is a very limited number of available real traces in the public domain, syn ..."
Abstract
-
Cited by 106 (7 self)
- Add to MetaCart
(Show Context)
Validation of mobile ad hoc network protocols relies almost exclusively on simulation. The value of the validation is, therefore, highly dependent on how realistic the movement models used in the simulations are. Since there is a very limited number of available real traces in the public domain, synthetic models for movement pattern generation must be used. However, most widely used models are currently very simplistic, their focus being ease of implementation rather than soundness of foundation. As a consequence, simulation results of protocols are often based on randomly generated movement patterns and, therefore, may differ considerably from those that can be obtained by deploying the system in real scenarios. Movement is strongly affected by the needs of humans to socialise or cooperate, in one form or another. Fortunately, humans are known to associate in particular ways that can be mathematically modelled and that have been studied in social sciences for years. In this paper we propose a new mobility model founded on social network theory. The model allows collections of hosts to be grouped together in a way that is based on social relationships among the individuals. This grouping is then mapped to a topographical space, with movements influenced by the strength of social ties that may also change in time. We have validated our model with real traces by showing that the synthetic mobility traces are a very good approximation of human movement patterns. We have also run simulations of AODV and DSR routing protocols on the mobility model and show how the message delivery ratio is affected by this type of mobility. 1.
Distributed community detection in delay tolerant networks,”
- Proc. ACM Conf. 2nd ACM/IEEE international workshop on Mobility in the evolving internet architecture (MobiArch ’07),
, 2007
"... ABSTRACT Community is an important attribute of Pocket Switched Networks (PSN), because mobile devices are carried by people who tend to belong to communities. We analysed community structure from mobility traces and used for forwarding algorithms ..."
Abstract
-
Cited by 98 (10 self)
- Add to MetaCart
(Show Context)
ABSTRACT Community is an important attribute of Pocket Switched Networks (PSN), because mobile devices are carried by people who tend to belong to communities. We analysed community structure from mobility traces and used for forwarding algorithms
Socially-Aware Routing for Publish-Subscribe in Delay-Tolerant Mobile Ad Hoc Networks
"... Abstract—Applications involving the dissemination of information directly relevant to humans (e.g., service advertising, news spreading, environmental alerts) often rely on publish-subscribe, in which the network delivers a published message only to the nodes whose subscribed interests match it. In ..."
Abstract
-
Cited by 94 (3 self)
- Add to MetaCart
(Show Context)
Abstract—Applications involving the dissemination of information directly relevant to humans (e.g., service advertising, news spreading, environmental alerts) often rely on publish-subscribe, in which the network delivers a published message only to the nodes whose subscribed interests match it. In principle, publishsubscribe is particularly useful in mobile environments, since it minimizes the coupling among communication parties. However, to the best of our knowledge, none of the (few) works that tackled publish-subscribe in mobile environments has yet addressed intermittently-connected human networks. Socially-related people tend to be co-located quite regularly. This characteristic can be exploited to drive forwarding decisions in the interest-based routing layer supporting the publish-subscribe network, yielding not only improved performance but also the ability to overcome high rates of mobility and long-lasting disconnections. In this paper we propose SocialCast, a routing framework for publish-subscribe that exploits predictions based on metrics of social interaction (e.g., patterns of movements among communities) to identify the best information carriers. We highlight the principles underlying our protocol, illustrate its operation, and evaluate its performance using a mobility model based on a social network validated with real human mobility traces. The evaluation shows that prediction of colocation and node mobility allow for maintaining a very high and steady event delivery with low overhead and latency, despite the variation in density, number of replicas per message or speed. Index Terms— I.
Spray and focus: Efficient mobility-assisted routing for heterogeneous and correlated mobility
- In Proceedings of IEEE PerCom Workshop on Intermittently Connected Mobile Ad Hoc Networks
, 2007
"... Intermittently connected mobile networks are wireless networks where most of the time there does not exist a complete path from the source to the destination. There are many real networks that follow this model, for example, wildlife tracking sensor networks, military networks, vehicular ad hoc netw ..."
Abstract
-
Cited by 81 (0 self)
- Add to MetaCart
(Show Context)
Intermittently connected mobile networks are wireless networks where most of the time there does not exist a complete path from the source to the destination. There are many real networks that follow this model, for example, wildlife tracking sensor networks, military networks, vehicular ad hoc networks (VANETs), etc. To deal with such networks researchers have suggested to use controlled replication or “spraying ” methods that can reduce the overhead of flooding-based schemes by distributing a small number of copies to only a few relays. These relays then “look” for the destination in parallel as they move into the network. Although such schemes can perform well in scenarios with high mobility (e.g. VANETs), they struggle in situations were mobility is slow and correlated in space and/or time. To route messages efficiently in such networks, we propose a scheme that also distributes a small number of copies to few relays. However, each relay can then forward its copy further using a single-copy utility-based scheme, instead of naively waiting to deliver it to the destination itself. This scheme exploits all the advantages of controlled replication, but is also able to identify appropriate forwarding opportunities that could deliver the message faster. Simulation results for traditional mobility models, as well as for a more realistic “community-based ” model, indicate that our scheme can reduce the delay of existing spraying techniques up to 20 times in some scenarios. 1
DFT-MSN: The Delay/Fault-Tolerant Mobile Sensor Network for Pervasive Information Gathering
- INFOCOM 2006
, 2006
"... Abstract — This paper focuses on the Delay/Fault-Tolerant Mobile Sensor Network (DFT-MSN) for pervasive information gathering. We develop simple and efficient data delivery schemes tailored for DFT-MSN, which has several unique characteristics such as sensor mobility, loose connectivity, fault toler ..."
Abstract
-
Cited by 74 (6 self)
- Add to MetaCart
(Show Context)
Abstract — This paper focuses on the Delay/Fault-Tolerant Mobile Sensor Network (DFT-MSN) for pervasive information gathering. We develop simple and efficient data delivery schemes tailored for DFT-MSN, which has several unique characteristics such as sensor mobility, loose connectivity, fault tolerability, delay tolerability, and buffer limit. We first study two basic approaches, namely, direct transmission and flooding. We analyze their performance by using queuing theory and statistics. Based on the analytic results that show the tradeoff between data delivery delay/ratio and transmission overhead, we introduce an optimized flooding scheme that minimizes transmission overhead in flooding. Then, we propose a simple and effective DFT-MSN data delivery scheme, which consists of two key components for data transmission and queue management, respectively. The former makes decision on when and where to transmit data messages based on the delivery probability, which reflects the likelihood that a sensor can deliver data messages to the sink. The latter decides which messages to transmit or drop based on the fault tolerance, which indicates the importance of the messages. The system parameters are carefully tuned on the basis of thorough analyses to optimize network performance. Extensive simulations are carried out for performance evaluation. Our results show that the proposed DFT-MSN data delivery scheme achieves the highest message delivery ratio with acceptable delay and transmission overhead. I.
An ad hoc mobility model founded on social network theory
- In Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems
, 2004
"... Almost all work on mobile ad hoc networks relies on simulations, which, in turn, rely on realistic movement models for their credibility. Since there is a total absence of realistic data in the public domain, synthetic models for movement pattern generation must be used and the most widely used mode ..."
Abstract
-
Cited by 64 (8 self)
- Add to MetaCart
(Show Context)
Almost all work on mobile ad hoc networks relies on simulations, which, in turn, rely on realistic movement models for their credibility. Since there is a total absence of realistic data in the public domain, synthetic models for movement pattern generation must be used and the most widely used models are currently very simplistic, the focus being ease of implementation rather than soundness of foundation. Whilst it would be preferable to have models that better reflect the movement of real users, it is currently impossible to validate any movement model against real data. However, it is lazy to conclude from this that all models are equally likely to be invalid so any will do. We note that movement is strongly affected by the needs of humans to socialise in one form or another. Fortunately, humans are known to associate in particular ways that can be mathematically modelled, and that are likely to bias their movement patterns. Thus, we propose a new mobility model that is founded on social network theory, because this has empirically been shown to be useful as a means of describing human relationships. In particular, the model allows collections of hosts to be grouped together in a way that is based on social relationships among the individuals. This grouping is only then mapped to a topographical space, with topography biased by the strength of social ties. We discuss the implementation of this mobility model and we evaluate emergent properties of the generated networks. In particular, we show that grouping mechanism strongly influences the probability distribution of the average degree (i.e., the average number of neighbours of a host) in the simulated network.