Results 1 -
2 of
2
A New Approach for Speech Enhancement Based On Eigenvalue Spectral Subtraction
"... In this paper, a phase space reconstruction-based method is proposed for speech enhancement. The method embeds the noisy signal into a high dimensional reconstructed phase space and uses Spectral Subtraction idea. The advantages of the proposed method are fast performance, high SNR and good MOS. In ..."
Abstract
- Add to MetaCart
(Show Context)
In this paper, a phase space reconstruction-based method is proposed for speech enhancement. The method embeds the noisy signal into a high dimensional reconstructed phase space and uses Spectral Subtraction idea. The advantages of the proposed method are fast performance, high SNR and good MOS. In order to evaluate the proposed method, ten signals of TIMIT database mixed with the white additive Gaussian noise and then the method was implemented. The efficiency of the proposed method was evaluated by using qualitative and quantitative criteria.
Coimbatore,Tamil Nadu,India
"... The primary goal of this paper is to provide an overview of existing Text-To-Speech (TTS) Techniques by highlighting its usage and advantage. First Generation Techniques includes Formant Synthesis and Articulatory Synthesis. Formant Synthesis works by using individually controllable formant filters, ..."
Abstract
- Add to MetaCart
The primary goal of this paper is to provide an overview of existing Text-To-Speech (TTS) Techniques by highlighting its usage and advantage. First Generation Techniques includes Formant Synthesis and Articulatory Synthesis. Formant Synthesis works by using individually controllable formant filters, which can be set to produce accurate estimations of the vocal-track transfer function. Articulatory Synthesis produces speech by direct modeling of Human articulator behavior. Second Generation Techniques incorporates Concatenative synthesis and Sinusoidal synthesis. Concatenative synthesis generates speech output by concatenating the segments of recorded speech. Generally, Concatenative synthesis generates the natural sounding synthesized speech. Sinusoidal Synthesis use a harmonic model and decompose each frame into a set of harmonics of an estimated fundamental frequency. The model parameters are the amplitudes and periods of the harmonics. With these, the value of the fundamental can be changed while keeping the same basic spectral..In adding, Third Generation includes Hidden Markov Model (HMM) and Unit Selection Synthesis.HMM trains the parameter module and produce high quality Speech. Finally, Unit Selection operates by selecting the best sequence of units from a large speech database which matches the specification.