Results 1 
5 of
5
The scope of logic: deduction, abduction, analogy
"... The present form of mathematical logic originated in the twenties and early thirties from the partial merging of two different traditions, the algebra of logic and the logicist tradition (see [27], [41]). This resulted in a new form of logic in which several features of the two earlier traditions co ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
The present form of mathematical logic originated in the twenties and early thirties from the partial merging of two different traditions, the algebra of logic and the logicist tradition (see [27], [41]). This resulted in a new form of logic in which several features of the two earlier traditions coexist. Clearly neither the algebra of logic nor the logicist’s logic is identical to the present form of mathematical logic, yet some of their basic ideas can be distinctly recognized within it. One of such ideas is Boole’s view that logic is the study of the laws of thought. This is not to be meant in a psychologistic way. Frege himself states that the task of logic can be represented “as the investigation of the mind; [though] of the mind, not of minds” [17, p. 369]. Moreover Frege never charges Boole with being psychologistic and in a letter to Peano even distinguishes between the followers of Boole and “the psychological logicians ” [16, p. 108]. In fact for Boole the laws of thought which are the object of logic belong “to the domain of what is termed necessary truth ” [2, p. 404]. For him logic does not depend on psychology, on the contrary psychology depends on logic insofar as it is only through an investigation of logical operations that we could obtain “some probable
Set Theory from Cantor to Cohen
, 2007
"... Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions and gauging their consistency strength. But set theory is also distinguished by having begun int ..."
Abstract
 Add to MetaCart
Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, set theory has proceeded in the opposite direction, from a web of intensions to a theory of extension par excellence, and like other fields of mathematics its vitality and progress have depended on a steadily growing core of mathematical proofs and methods, problems and results. There is also the stronger contention that from the beginning set theory actually developed through a progression of mathematical moves, whatever and sometimes in spite of what has been claimed on its behalf. What follows is an account of the development of set theory from its beginnings through the creation of forcing based on these contentions, with an avowedly Whiggish emphasis on the heritage that has been retained and developed by the current theory. The