Results 1 - 10
of
2,007
Kernel-Based Object Tracking
, 2003
"... A new approach toward target representation and localization, the central component in visual tracking of non-rigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity fu ..."
Abstract
-
Cited by 900 (4 self)
- Add to MetaCart
(Show Context)
A new approach toward target representation and localization, the central component in visual tracking of non-rigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking. Keywords: non-rigid object tracking; target localization and representation; spatially-smooth similarity function; Bhattacharyya coefficient; face tracking. 1
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract
-
Cited by 770 (3 self)
- Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying Rao-Blackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors
- In Proceedings of the Nineteenth International WWW Conference (WWW2010). ACM
, 2010
"... Twitter, a popular microblogging service, has received much attention recently. An important characteristic of Twitter is its real-time nature. For example, when an earthquake occurs, people make many Twitter posts (tweets) related to the earthquake, which enables detection of earthquake occurrence ..."
Abstract
-
Cited by 524 (4 self)
- Add to MetaCart
(Show Context)
Twitter, a popular microblogging service, has received much attention recently. An important characteristic of Twitter is its real-time nature. For example, when an earthquake occurs, people make many Twitter posts (tweets) related to the earthquake, which enables detection of earthquake occurrence promptly, simply by observing the tweets. As described in this paper, we investigate the real-time interaction of events such as earthquakes, in Twitter, and propose an algorithm to monitor tweets and to detect a target event. To detect a target event, we devise a classifier of tweets based on features such as the keywords in a tweet, the number of words, and their context. Subsequently, we produce a probabilistic spatiotemporal model for the target event that can find the center and the trajectory of the event location. We consider each Twitter user as a sensor and apply Kalman filtering and particle filtering, which are widely used for location estimation in ubiquitous/pervasive computing. The particle filter works better than other compared methods in estimating the centers of earthquakes and the trajectories of typhoons. As an application, we construct an earthquake reporting system in Japan. Because of the numerous earthquakes and the large number of Twitter users throughout the country, we can detect an earthquake by monitoring tweets with high probability (96 % of earthquakes of Japan Meteorological Agency (JMA) seismic intensity scale 3 or more are detected). Our system detects earthquakes promptly and sends e-mails to registered users. Notification is delivered much faster than the announcements that are broadcast by the JMA. 1.
Learning and inferring transportation routines
, 2004
"... This paper introduces a hierarchical Markov model that can learn and infer a user’s daily movements through the community. The model uses multiple levels of abstraction in order to bridge the gap between raw GPS sensor measurements and high level information such as a user’s mode of transportation ..."
Abstract
-
Cited by 312 (22 self)
- Add to MetaCart
This paper introduces a hierarchical Markov model that can learn and infer a user’s daily movements through the community. The model uses multiple levels of abstraction in order to bridge the gap between raw GPS sensor measurements and high level information such as a user’s mode of transportation or her goal. We apply Rao-Blackwellised particle filters for efficient inference both at the low level and at the higher levels of the hierarchy. Significant locations such as goals or locations where the user frequently changes mode of transportation are learned from GPS data logs without requiring any manual labeling. We show how to detect abnormal behaviors (e.g. taking a wrong bus) by concurrently tracking his activities with a trained and a prior model. Experiments show that our model is able to accurately predict the goals of a person and to recognize situations in which the user performs unknown activities.
Nonparametric Belief Propagation
- IN CVPR
, 2002
"... In applications of graphical models arising in fields such as computer vision, the hidden variables of interest are most naturally specified by continuous, non--Gaussian distributions. However, due to the limitations of existing inf#6F6F3 algorithms, it is of#]k necessary tof#3# coarse, ..."
Abstract
-
Cited by 279 (25 self)
- Add to MetaCart
In applications of graphical models arising in fields such as computer vision, the hidden variables of interest are most naturally specified by continuous, non--Gaussian distributions. However, due to the limitations of existing inf#6F6F3 algorithms, it is of#]k necessary tof#3# coarse, discrete approximations to such models. In this paper, we develop a nonparametric belief propagation (NBP) algorithm, which uses stochastic methods to propagate kernel--based approximations to the true continuous messages. Each NBP message update is based on an efficient sampling procedure which can accomodate an extremely broad class of potentialf#l3]k[[z3 allowing easy adaptation to new application areas. We validate our method using comparisons to continuous BP for Gaussian networks, and an application to the stereo vision problem.
HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion
, 2006
"... While research on articulated human motion and pose estimation has progressed rapidly in the last few years, there has been no systematic quantitative evaluation of competing methods to establish the current state of the art. We present data obtained using a hardware system that is able to capture s ..."
Abstract
-
Cited by 266 (15 self)
- Add to MetaCart
While research on articulated human motion and pose estimation has progressed rapidly in the last few years, there has been no systematic quantitative evaluation of competing methods to establish the current state of the art. We present data obtained using a hardware system that is able to capture synchronized video and ground-truth 3D motion. The resulting HUMANEVA datasets contain multiple subjects performing a set of predefined actions with a number of repetitions. On the order of 40, 000 frames of synchronized motion capture and multi-view video (resulting in over one quarter million image frames in total) were collected at 60 Hz with an additional 37,000 time instants of pure motion capture data. A standard set of error measures is defined for evaluating both 2D and 3D pose estimation and tracking algorithms. We also describe a baseline algorithm for 3D articulated tracking that uses a relatively standard Bayesian framework with optimization in the form of Sequential Importance Resampling and Annealed Particle Filtering. In the context of this baseline algorithm we explore a variety of likelihood functions, prior models of human motion and the effects of algorithm parameters. Our experiments suggest that image observation models and motion priors play important roles in performance, and that in a multi-view laboratory environment, where initialization is available, Bayesian filtering tends to perform well. The datasets and the software are made available to the research community. This infrastructure will support the development of new articulated motion and pose estimation algorithms, will provide a baseline for the evaluation and comparison of new methods, and will help establish the current state of the art in human pose estimation and tracking.
A tutorial on particle filtering and smoothing: fifteen years later
- OXFORD HANDBOOK OF NONLINEAR FILTERING
, 2011
"... Optimal estimation problems for non-linear non-Gaussian state-space models do not typically admit analytic solutions. Since their introduction in 1993, particle filtering methods have become a very popular class of algorithms to solve these estimation problems numerically in an online manner, i.e. r ..."
Abstract
-
Cited by 214 (15 self)
- Add to MetaCart
(Show Context)
Optimal estimation problems for non-linear non-Gaussian state-space models do not typically admit analytic solutions. Since their introduction in 1993, particle filtering methods have become a very popular class of algorithms to solve these estimation problems numerically in an online manner, i.e. recursively as observations become available, and are now routinely used in fields as diverse as computer vision, econometrics, robotics and navigation. The objective of this tutorial is to provide a complete, up-to-date survey of this field as of 2008. Basic and advanced particle methods for filtering as well as smoothing are presented.
MCMC-based particle filtering for tracking a variable number of interacting targets
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2005
"... We describe a particle filter that effectively deals with interacting targets- targets that are influenced by the proximity and/or behavior of other targets. The particle filter includes a Markov random field (MRF) motion prior that helps maintain the identity of targets throughout an interaction, s ..."
Abstract
-
Cited by 206 (6 self)
- Add to MetaCart
(Show Context)
We describe a particle filter that effectively deals with interacting targets- targets that are influenced by the proximity and/or behavior of other targets. The particle filter includes a Markov random field (MRF) motion prior that helps maintain the identity of targets throughout an interaction, significantly reducing tracker failures. We show that this MRF prior can be easily implemented by including an additional interaction factor in the importance weights of the particle filter. However, the computational requirements of the resulting multi-target filter render it unusable for large numbers of targets. Conse-quently, we replace the traditional importance sampling step in the particle filter with a novel Markov chain Monte Carlo (MCMC) sampling step to obtain a more efficient MCMC-based multi-target filter. We also show how to extend this MCMC-based filter to address a variable number of interacting targets. Finally, we present both qualitative and quantitative experimental results, demonstrating that the resulting particle filters deal efficiently and effectively with complicated target interactions.
Gesture recognition: A survey
- IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART C
, 2007
"... Gesture recognition pertains to recognizing meaningful expressions of motion by a human, involving the hands, arms, face, head, and/or body. It is of utmost importance in designing an intelligent and efficient human–computer interface. The applications of gesture recognition are manifold, ranging fr ..."
Abstract
-
Cited by 200 (0 self)
- Add to MetaCart
(Show Context)
Gesture recognition pertains to recognizing meaningful expressions of motion by a human, involving the hands, arms, face, head, and/or body. It is of utmost importance in designing an intelligent and efficient human–computer interface. The applications of gesture recognition are manifold, ranging from sign language through medical rehabilitation to virtual reality. In this paper, we provide a survey on gesture recognition with particular emphasis on hand gestures and facial expressions. Applications involving hidden Markov models, particle filtering and condensation, finite-state machines, optical flow, skin color, and connectionist models are discussed in detail. Existing challenges and future research possibilities are also highlighted.
Tracking a moving object with a binary sensor network
, 2003
"... In this paper we examine the role of very simple and noisy sensors for the tracking problem. We propose a binary sensor model, where each sensor’s value is converted reliably to one bit of information only: whether the object is moving toward the sensor or away from the sensor. We show that a networ ..."
Abstract
-
Cited by 159 (1 self)
- Add to MetaCart
(Show Context)
In this paper we examine the role of very simple and noisy sensors for the tracking problem. We propose a binary sensor model, where each sensor’s value is converted reliably to one bit of information only: whether the object is moving toward the sensor or away from the sensor. We show that a network of binary sensors has geometric properties that can be used to develop a solution for tracking with binary sensors and present resulting algorithms and simulation experiments. We develop a particle filtering style algorithm for target tracking using such minimalist sensors. We present an analysis of a fundamental tracking limitation under this sensor model, and show how this limitation can be overcome through the use of a single bit of proximity information at each sensor node. Our extensive simulations show low error that decreases with sensor density. 1.