Results 1 - 10
of
1,287
A computational approach to edge detection
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1986
"... This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumpti ..."
Abstract
-
Cited by 4675 (0 self)
- Add to MetaCart
(Show Context)
This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumptions about the form of the solution. We define detection and localization criteria for a class of edges, and present mathematical forms for these criteria as functionals on the operator impulse response. A third criterion is then added to ensure that the detector has only one response to- a single edge. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussian-smoothed image. We extend this simple detector using operators of several widths to cope with different signal-to-noise ratios in the image. We present a general method, called feature synthesis, for the fine-to-coarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function is extended along the edge. This detection scheme uses several elongated operators at each point, and the directional operator outputs are integrated with the gradient maximum detector.
Snakes: Active contour models
- INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1988
"... A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge ..."
Abstract
-
Cited by 3951 (17 self)
- Add to MetaCart
(Show Context)
A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the cap-ture region surrounding a feature. Snakes provide a unified account of a number of visual problems, in-cluding detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.
Performance of optical flow techniques
- INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1994
"... While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, ..."
Abstract
-
Cited by 1325 (32 self)
- Add to MetaCart
(Show Context)
While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, matching, energy-based and phase-based methods. Our comparisons are primarily empirical, and concentrate on the accuracy, reliability and density of the velocity measurements; they show that performance can differ significantly among the techniques we implemented.
Relations between the statistics of natural images and the response properties of cortical cells
- J. Opt. Soc. Am. A
, 1987
"... The relative efficiency of any particular image-coding scheme should be defined only in relation to the class of images that the code is likely to encounter. To understand the representation of images by the mammalian visual system, it might therefore be useful to consider the statistics of images f ..."
Abstract
-
Cited by 831 (18 self)
- Add to MetaCart
(Show Context)
The relative efficiency of any particular image-coding scheme should be defined only in relation to the class of images that the code is likely to encounter. To understand the representation of images by the mammalian visual system, it might therefore be useful to consider the statistics of images from the natural environment (i.e., images with trees, rocks, bushes, etc). In this study, various coding schemes are compared in relation to how they represent the information in such natural images. The coefficients of such codes are represented by arrays of mechanisms that respond to local regions of space, spatial frequency, and orientation (Gabor-like transforms). For many classes of image, such codes will not be an efficient means of representing information. However, the results obtained with six natural images suggest that the orientation and the spatial-frequency tuning of mammalian simple cells are well suited for coding the information in such images if the goal of the code is to convert higher-order redundancy (e.g., correlation between the intensities of neighboring pixels) into first-order redundancy (i.e., the response distribution of the coefficients). Such coding produces a relatively high signal-to-noise ratio and permits information to be transmitted with only a subset of the total number of cells. These results support Barlow's theory that the goal of natural vision is to represent the information in the natural environment with minimal redundancy.
Image registration methods: a survey.
, 2003
"... Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrical ..."
Abstract
-
Cited by 760 (10 self)
- Add to MetaCart
(Show Context)
Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and feature-based) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas. q
The "Independent Components" of Natural Scenes are Edge Filters
, 1997
"... It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attem ..."
Abstract
-
Cited by 617 (29 self)
- Add to MetaCart
It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attempts to find a factorial code of independent visual features. We show here that a new unsupervised learning algorithm based on information maximization, a nonlinear "infomax" network, when applied to an ensemble of natural scenes produces sets of visual filters that are localized and oriented. Some of these filters are Gabor-like and resemble those produced by the sparseness-maximization network. In addition, the outputs of these filters are as independent as possible, since this infomax network performs Independent Components Analysis or ICA, for sparse (super-gaussian) component distributions. We compare the resulting ICA filters and their associated basis functions, with other decorrelating filters produced by Principal Components Analysis (PCA) and zero-phase whitening filters (ZCA). The ICA filters have more sparsely distributed (kurtotic) outputs on natural scenes. They also resemble the receptive fields of simple cells in visual cortex, which suggests that these neurons form a natural, information-theoretic
Singularity Detection And Processing With Wavelets
- IEEE Transactions on Information Theory
, 1992
"... Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavele ..."
Abstract
-
Cited by 595 (13 self)
- Add to MetaCart
(Show Context)
Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavelet transform are explained. We then prove that the local maxima of a wavelet transform detect the location of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations have a different behavior that we study separately. We show that the size of the oscillations can be measured from the wavelet transform local maxima. It has been shown that one and two-dimensional signals can be reconstructed from the local maxima of their wavelet transform [14]. As an application, we develop an algorithm that removes white noises by discriminating the noise and the signal singularities through an analysis of their ...
Three-dimensional object recognition from single two-dimensional images
- Artificial Intelligence
, 1987
"... A computer vision system has been implemented that can recognize threedimensional objects from unknown viewpoints in single gray-scale images. Unlike most other approaches, the recognition is accomplished without any attempt to reconstruct depth information bottom-up from the visual input. Instead, ..."
Abstract
-
Cited by 484 (7 self)
- Add to MetaCart
(Show Context)
A computer vision system has been implemented that can recognize threedimensional objects from unknown viewpoints in single gray-scale images. Unlike most other approaches, the recognition is accomplished without any attempt to reconstruct depth information bottom-up from the visual input. Instead, three other mechanisms are used that can bridge the gap between the two-dimensional image and knowledge of three-dimensional objects. First, a process of perceptual organization is used to form groupings and structures in the image that are likely to be invariant over a wide range of viewpoints. Second, a probabilistic ranking method is used to reduce the size of the search space during model based matching. Finally, a process of spatial correspondence brings the projections of three-dimensional models into direct correspondence with the image by solving for unknown viewpoint and model parameters. A high level of robustness in the presence of occlusion and missing data can be achieved through full application of a viewpoint consistency constraint. It is argued that similar mechanisms and constraints form the basis for recognition in human vision. This paper has been published in Artificial Intelligence, 31, 3 (March 1987), pp. 355–395. 1 1
Contour Detection and Hierarchical Image Segmentation
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2010
"... This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentati ..."
Abstract
-
Cited by 389 (24 self)
- Add to MetaCart
(Show Context)
This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming the output of any contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly outperform competing algorithms. The automatically generated hierarchical segmentations can be interactively refined by userspecified annotations. Computation at multiple image resolutions provides a means of coupling our system to recognition applications.
Adelson,"A Multiresolution Spline with Application to Image Mosaics",
- ACM Transactions on Graphics,
, 1983
"... We define a multiresolution spline technique for combining two or more images into a larger image mosaic. In this procedure, the images to be splined are first decomposed into a set of band-pass filtered component images. Next, the component images in each spatial frequency hand are assembled into ..."
Abstract
-
Cited by 362 (4 self)
- Add to MetaCart
(Show Context)
We define a multiresolution spline technique for combining two or more images into a larger image mosaic. In this procedure, the images to be splined are first decomposed into a set of band-pass filtered component images. Next, the component images in each spatial frequency hand are assembled into a corresponding bandpass mosaic. In this step, component images are joined using a weighted average within a transition zone which is proportional in size to the wave lengths represented in the band. Finally, these band-pass mosaic images are summed to obtain the desired image mosaic. In this way, the spline is matched to the scale of features within the images themselves. When coarse features occur near borders, these are blended gradually over a relatively large distance without blurring or otherwise degrading finer image details in the neighborhood of th e border.