Results 1 - 10
of
149
Global inference for sentence compression: An integer linear programming approach
- Journal of Artificial Intelligence Research (JAIR
, 2008
"... Sentence compression holds promise for many applications ranging from summarization to subtitle generation. Our work views sentence compression as an optimization problem and uses integer linear programming (ILP) to infer globally optimal compressions in the presence of linguistically motivated cons ..."
Abstract
-
Cited by 106 (7 self)
- Add to MetaCart
(Show Context)
Sentence compression holds promise for many applications ranging from summarization to subtitle generation. Our work views sentence compression as an optimization problem and uses integer linear programming (ILP) to infer globally optimal compressions in the presence of linguistically motivated constraints. We show how previous formulations of sentence compression can be recast as ILPs and extend these models with novel global constraints. Experimental results on written and spoken texts demonstrate improvements over state-of-the-art models. 1.
The importance of syntactic parsing and inference in semantic role labeling
- COMPUTATIONAL LINGUISTICS
, 2008
"... We present a general framework for semantic role labeling. The framework combines a machine learning technique with an integer linear programming based inference procedure, which incorporates linguistic and structural constraints into a global decision process. Within this framework, we study the ro ..."
Abstract
-
Cited by 94 (26 self)
- Add to MetaCart
(Show Context)
We present a general framework for semantic role labeling. The framework combines a machine learning technique with an integer linear programming based inference procedure, which incorporates linguistic and structural constraints into a global decision process. Within this framework, we study the role of syntactic parsing information in semantic role labeling. We show that full syntactic parsing information is, by far, most relevant in identifying the argument, especially, in the very first stage—the pruning stage. Surprisingly, the quality of the pruning stage cannot be solely determined based on its recall and precision. Instead, it depends on the characteristics of the output candidates that determine the difficulty of the downstream problems. Motivated by this observation, we propose an effective and simple approach of combining different semantic role labeling systems through joint inference, which significantly improves its performance. Our system has been evaluated in the CoNLL-2005 shared task on semantic role labeling, and achieves the highest F1 score among 19 participants.
Structured Models for Fine-to-Coarse Sentiment Analysis
- Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics
, 2007
"... In this paper we investigate a structured model for jointly classifying the sentiment of text at varying levels of granularity. Inference in the model is based on standard sequence classification techniques using constrained Viterbi to ensure consistent solutions. The primary advantage of such a mod ..."
Abstract
-
Cited by 89 (6 self)
- Add to MetaCart
(Show Context)
In this paper we investigate a structured model for jointly classifying the sentiment of text at varying levels of granularity. Inference in the model is based on standard sequence classification techniques using constrained Viterbi to ensure consistent solutions. The primary advantage of such a model is that it allows classification decisions from one level in the text to influence decisions at another. Experiments show that this method can significantly reduce classification error relative to models trained in isolation. 1
First-order probabilistic models for coreference resolution
- In HLT/NAACL
, 2007
"... Traditional noun phrase coreference resolution systems represent features only of pairs of noun phrases. In this paper, we propose a machine learning method that enables features over sets of noun phrases, resulting in a first-order probabilistic model for coreference. We outline a set of approximat ..."
Abstract
-
Cited by 86 (20 self)
- Add to MetaCart
(Show Context)
Traditional noun phrase coreference resolution systems represent features only of pairs of noun phrases. In this paper, we propose a machine learning method that enables features over sets of noun phrases, resulting in a first-order probabilistic model for coreference. We outline a set of approximations that make this approach practical, and apply our method to the ACE coreference dataset, achieving a 45 % error reduction over a comparable method that only considers features of pairs of noun phrases. This result demonstrates an example of how a firstorder logic representation can be incorporated into a probabilistic model and scaled efficiently. 1
Semantic role labeling via integer linear programming inference
- In Proceedings of COLING-04
, 2004
"... We present a system for the semantic role labeling task. The system combines a machine learning technique with an inference procedure based on integer linear programming that supports the incorporation of linguistic and structural constraints into the decision process. The system is tested on the da ..."
Abstract
-
Cited by 85 (23 self)
- Add to MetaCart
(Show Context)
We present a system for the semantic role labeling task. The system combines a machine learning technique with an inference procedure based on integer linear programming that supports the incorporation of linguistic and structural constraints into the decision process. The system is tested on the data provided in the CoNLL-2004 shared task on semantic role labeling and achieves very competitive results. 1
Structured learning with approximate inference
- Advances in Neural Information Processing Systems
"... In many structured prediction problems, the highest-scoring labeling is hard to compute exactly, leading to the use of approximate inference methods. However, when inference is used in a learning algorithm, a good approximation of the score may not be sufficient. We show in particular that learning ..."
Abstract
-
Cited by 79 (2 self)
- Add to MetaCart
(Show Context)
In many structured prediction problems, the highest-scoring labeling is hard to compute exactly, leading to the use of approximate inference methods. However, when inference is used in a learning algorithm, a good approximation of the score may not be sufficient. We show in particular that learning can fail even with an approximate inference method with rigorous approximation guarantees. There are two reasons for this. First, approximate methods can effectively reduce the expressivity of an underlying model by making it impossible to choose parameters that reliably give good predictions. Second, approximations can respond to parameter changes in such a way that standard learning algorithms are misled. In contrast, we give two positive results in the form of learning bounds for the use of LP-relaxed inference in structured perceptron and empirical risk minimization settings. We argue that without understanding combinations of inference and learning, such as these, that are appropriately compatible, learning performance under approximate inference cannot be guaranteed. 1
2006. Joint extraction of entities and relations for opinion recognition
- In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP
, 2006
"... We present an approach for the joint extraction of entities and relations in the context of opinion recognition and analysis. We identify two types of opinion-related entities — expressions of opinions and sources of opinions — along with the linking relation that exists between them. Inspired by Ro ..."
Abstract
-
Cited by 68 (8 self)
- Add to MetaCart
We present an approach for the joint extraction of entities and relations in the context of opinion recognition and analysis. We identify two types of opinion-related entities — expressions of opinions and sources of opinions — along with the linking relation that exists between them. Inspired by Roth and Yih (2004), we employ an integer linear programming approach to solve the joint opinion recognition task, and show that global, constraint-based inference can significantly boost the performance of both relation extraction and the extraction of opinion-related entities. Performance further improves when a semantic role labeling system is incorporated. The resulting system achieves F-measures of 79 and 69 for entity and relation extraction, respectively, improving substantially over prior results in the area. 1
A Study of Global Inference Algorithms in Multi-Document Summarization
"... Abstract. In this work we study the theoretical and empirical properties of various global inference algorithms for multi-document summarization. We start by defining a general framework and proving that inference in it is NP-hard. We then present three algorithms: The first is a greedy approximate ..."
Abstract
-
Cited by 65 (1 self)
- Add to MetaCart
(Show Context)
Abstract. In this work we study the theoretical and empirical properties of various global inference algorithms for multi-document summarization. We start by defining a general framework and proving that inference in it is NP-hard. We then present three algorithms: The first is a greedy approximate method, the second a dynamic programming approach based on solutions to the knapsack problem, and the third is an exact algorithm that uses an Integer Linear Programming formulation of the problem. We empirically evaluate all three algorithms and show that, relative to the exact solution, the dynamic programming algorithm provides near optimal results with preferable scaling properties. 1
Incremental integer linear programming for non-projective dependency parsing
- In EMNLP
, 2006
"... Integer Linear Programming has recently been used for decoding in a number of probabilistic models in order to enforce global constraints. However, in certain applications, such as non-projective dependency parsing and machine translation, the complete formulation of the decoding problem as an integ ..."
Abstract
-
Cited by 63 (6 self)
- Add to MetaCart
(Show Context)
Integer Linear Programming has recently been used for decoding in a number of probabilistic models in order to enforce global constraints. However, in certain applications, such as non-projective dependency parsing and machine translation, the complete formulation of the decoding problem as an integer linear program renders solving intractable. We present an approach which solves the problem incrementally, thus we avoid creating intractable integer linear programs. This approach is applied to Dutch dependency parsing and we show how the addition of linguistically motivated constraints can yield a significant improvement over stateof-the-art. 1
Learning and inference over constrained output
- In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI
, 2005
"... We study learning structured output in a discriminative framework where values of the output variables are estimated by local classifiers. In this framework, complex dependencies among the output variables are captured by constraints and dictate which global labels can be inferred. We compare two st ..."
Abstract
-
Cited by 57 (19 self)
- Add to MetaCart
We study learning structured output in a discriminative framework where values of the output variables are estimated by local classifiers. In this framework, complex dependencies among the output variables are captured by constraints and dictate which global labels can be inferred. We compare two strategies, learning independent classifiers and inference based training, by observing their behaviors in different conditions. Experiments and theoretical justification lead to the conclusion that using inference based learning is superior when the local classifiers are difficult to learn but may require many examples before any discernible difference can be observed. 1