Results 11 - 20
of
409
Machine learning for high-speed corner detection
- In European Conference on Computer Vision
, 2006
"... Where feature points are used in real-time frame-rate applications, a high-speed feature detector is necessary. Feature detectors such as SIFT (DoG), Harris and SUSAN are good methods which yield high quality features, however they are too computationally intensive for use in real-time applicati ..."
Abstract
-
Cited by 353 (4 self)
- Add to MetaCart
(Show Context)
Where feature points are used in real-time frame-rate applications, a high-speed feature detector is necessary. Feature detectors such as SIFT (DoG), Harris and SUSAN are good methods which yield high quality features, however they are too computationally intensive for use in real-time applications of any complexity. Here we show that machine learning can be used to derive a feature detector which can fully process live PAL video using less than 7% of the available processing time. By comparison neither the Harris detector (120%) nor the detection stage of SIFT (300%) can operate at full frame rate.
Learning object categories from google’s image search
- In Proceedings of the International Conference on Computer Vision
, 2005
"... Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by uti-lizing the raw output of image search engines available on the Inter ..."
Abstract
-
Cited by 316 (18 self)
- Add to MetaCart
(Show Context)
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by uti-lizing the raw output of image search engines available on the Internet. We develop a new model, TSI-pLSA, which extends pLSA (as applied to visual words) to include spa-tial information in a translation and scale invariant man-ner. Our approach can handle the high intra-class vari-ability and large proportion of unrelated images returned by search engines. We evaluate the models on standard test sets, showing performance competitive with existing meth-ods trained on hand prepared datasets. 1.
Speeded-Up Robust Features (SURF)
, 2008
"... This article presents a novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features). SURF approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faste ..."
Abstract
-
Cited by 313 (5 self)
- Add to MetaCart
This article presents a novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features). SURF approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descriptors (specifically, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps. The paper encompasses a detailed description of the detector and descriptor and then explores the effect of the most important parameters. We conclude the article with SURF’s application to two challenging, yet converse goals: camera calibration as a special case of image registration, and object recognition. Our experiments underline SURF’s usefulness in a broad range of topics in computer vision.
A sparse texture representation using local affine regions
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2005
"... This article introduces a texture representation suitable for recognizing images of textured surfaces under a wide range of transformations, including viewpoint changes and non-rigid deformations. At the feature extraction stage, a sparse set of affine Harris and Laplacian regions is found in the im ..."
Abstract
-
Cited by 210 (15 self)
- Add to MetaCart
(Show Context)
This article introduces a texture representation suitable for recognizing images of textured surfaces under a wide range of transformations, including viewpoint changes and non-rigid deformations. At the feature extraction stage, a sparse set of affine Harris and Laplacian regions is found in the image. Each of these regions can be thought of as a texture element having a characteristic elliptic shape and a distinctive appearance pattern. This pattern is captured in an affine-invariant fashion via a process of shape normalization followed by the computation of two novel descriptors, the spin image and the RIFT descriptor. When affine invariance is not required, the original elliptical shape serves as an additional discriminative feature for texture recognition. The proposed approach is evaluated in retrieval and classi-fication tasks using the entire Brodatz database and a publicly available collection of 1000 photographs of textured surfaces taken from different viewpoints.
Groups of Adjacent Contour Segments for Object Detection
, 2007
"... We present a family of scale-invariant local shape features formed by chains of k connected, roughly straight contour segments (kAS), and their use for object class detection. kAS are able to cleanly encode pure fragments of an object boundary, without including nearby clutter. Moreover, they offer ..."
Abstract
-
Cited by 188 (7 self)
- Add to MetaCart
(Show Context)
We present a family of scale-invariant local shape features formed by chains of k connected, roughly straight contour segments (kAS), and their use for object class detection. kAS are able to cleanly encode pure fragments of an object boundary, without including nearby clutter. Moreover, they offer an attractive compromise between information content and repeatability, and encompass a wide variety of local shape structures. We also define a translation and scale invariant descriptor encoding the geometric configuration of the segments within a kAS, making kAS easy to reuse in other frameworks, for example as a replacement or addition to interest points. Software for detecting and describing kAS is released on lear.inrialpes.fr/software. We demonstrate the high performance of kAS within a simple but powerful sliding-window object detection scheme. Through extensive evaluations, involving eight diverse object classes and more than 1400 images, we 1) study the evolution of performance as the degree of feature complexity k varies and determine the best degree; 2) show that kAS substantially outperform interest points for detecting shape-based classes; 3) compare our object detector to the recent, state-of-the-art system by Dalal and
Learning Local Image Descriptors
- Proc. IEEE Conf. Computer Vision and Pattern Recognition
, 2007
"... Abstract—In this paper, we explore methods for learning local image descriptors from training data. We describe a set of building blocks for constructing descriptors which can be combined together and jointly optimized so as to minimize the error of a nearest-neighbor classifier. We consider both li ..."
Abstract
-
Cited by 174 (2 self)
- Add to MetaCart
Abstract—In this paper, we explore methods for learning local image descriptors from training data. We describe a set of building blocks for constructing descriptors which can be combined together and jointly optimized so as to minimize the error of a nearest-neighbor classifier. We consider both linear and nonlinear transforms with dimensionality reduction, and make use of discriminant learning techniques such as Linear Discriminant Analysis (LDA) and Powell minimization to solve for the parameters. Using these techniques, we obtain descriptors that exceed state-of-the-art performance with low dimensionality. In addition to new experiments and recommendations for descriptor learning, we are also making available a new and realistic ground truth data set based on multiview stereo data. Index Terms—Image descriptors, local features, discriminative learning, SIFT. Ç 1
Weak hypotheses and boosting for generic object detection and recognition
- In Proc. ECCV
, 2004
"... Abstract. In this paper we describe the first stage of a new learning system for object detection and recognition. For our system we propose Boosting [5] as the underlying learning technique. This allows the use of very diverse sets of visual features in the learning process within a common framewor ..."
Abstract
-
Cited by 169 (10 self)
- Add to MetaCart
(Show Context)
Abstract. In this paper we describe the first stage of a new learning system for object detection and recognition. For our system we propose Boosting [5] as the underlying learning technique. This allows the use of very diverse sets of visual features in the learning process within a common framework: Boosting — together with a weak hypotheses finder — may choose very inhomogeneous features as most relevant for combination into a final hypothesis. As another advantage the weak hypotheses finder may search the weak hypotheses space without explicit calculation of all available hypotheses, reducing computation time. This contrasts the related work of Agarwal and Roth [1] where Winnow was used as learning algorithm and all weak hypotheses were calculated explicitly. In our first empirical evaluation we use four types of local descriptors: two basic ones consisting of a set of grayvalues and intensity moments and two high level descriptors: moment invariants [8] and SIFTs [12]. The descriptors are calculated from local patches detected by an interest point operator. The weak hypotheses finder selects one of the local patches and one type of local descriptor and efficiently searches for the most discriminative similarity threshold. This differs from other work on Boosting for object recognition where simple rectangular hypotheses [22] or complex classifiers [20] have been used. In relatively simple images, where the objects are prominent, our approach yields results comparable to the state-of-the-art [3]. But we also obtain very good results on more complex images, where the objects are located in arbitrary positions, poses, and scales in the images. These results indicate that our flexible approach, which also allows the inclusion of features from segmented regions and even spatial relationships, leads us a significant step towards generic object recognition. 1
Local Feature View Clustering for 3D Object Recognition
- IEEE Conference on Computer Vision and Pattern Recognition
, 2001
"... There have been important recent advances in object recognition through the matching of invariant local image features. However, the existing approaches are based on matching to individual training images. This paper presents a method for combining multiple images of a 3D object into a single model ..."
Abstract
-
Cited by 167 (6 self)
- Add to MetaCart
(Show Context)
There have been important recent advances in object recognition through the matching of invariant local image features. However, the existing approaches are based on matching to individual training images. This paper presents a method for combining multiple images of a 3D object into a single model representation. This provides for recognition of 3D objects from any viewpoint, the generalization of models to non-rigid changes, and improved robustness through the combination of features acquired under a range of imaging conditions. The decision of whether to cluster a training image into an existing view representation or to treat it as a new view is based on the geometric accuracy of the match to previous model views. A new probabilistic model is developed to reduce the false positive matches that would otherwise arise due to loosened geometric constraints on matching 3D and non-rigid models. A system has been developed based on these approaches that is able to robustly recognize 3D objects in cluttered natural images in sub-second times.
Selection of scale-invariant parts for object class recognition
- In ICCV
, 2003
"... This paper introduces a novel method for constructing and selecting scale-invariant object parts. Scale-invariant local descriptors are first grouped into basic parts. A classifier is then learned for each of these parts, and feature selection is used to determine the most discriminative ones. This ..."
Abstract
-
Cited by 158 (16 self)
- Add to MetaCart
(Show Context)
This paper introduces a novel method for constructing and selecting scale-invariant object parts. Scale-invariant local descriptors are first grouped into basic parts. A classifier is then learned for each of these parts, and feature selection is used to determine the most discriminative ones. This approach allows robust part detection, and it is invariant under scale changes—that is, neither the training images nor the test images have to be normalized. The proposed method is evaluated in car detection tasks with significant variations in viewing conditions, and promising results are demonstrated. Different local regions, classifiers and feature selection methods are quantitatively compared. Our evaluation shows that local invariant descriptors are an appropriate representation for object classes such as cars, and it underlines the importance of feature selection. marked in black in the figure. The corresponding patterns are very close, but one of the patches lies on a car, while the other lies in the background. This shows that the corresponding part is not discriminative for cars (in this environment at least). To demonstrate the effect of the proposed feature selection method, Fig. 1(b) shows the initially detected features (white) and discriminative descriptors determined by feature selection (black). These are the ones which should be used in a final, robust detection system. (a) 1.