Results 1 - 10
of
156
Stereo Processing by Semi-Global Matching and Mutual Information
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2007
"... This paper describes the Semi-Global Matching (SGM) stereo method. It uses a pixelwise, Mutual Information based matching cost for compensating radiometric differences of input images. Pixelwise matching is supported by a smoothness constraint that is usually expressed as a global cost function. SGM ..."
Abstract
-
Cited by 218 (1 self)
- Add to MetaCart
This paper describes the Semi-Global Matching (SGM) stereo method. It uses a pixelwise, Mutual Information based matching cost for compensating radiometric differences of input images. Pixelwise matching is supported by a smoothness constraint that is usually expressed as a global cost function. SGM performs a fast approximation by pathwise optimizations from all directions. The discussion also addresses occlusion detection, subpixel refinement and multi-baseline matching. Additionally, postprocessing steps for removing outliers, recovering from specific problems of structured environments and the interpolation of gaps are presented. Finally, strategies for processing almost arbitrarily large images and fusion of disparity images using orthographic projection are proposed. A comparison on standard stereo images shows that SGM is among the currently top-ranked algorithms and is best, if subpixel accuracy is considered. The complexity is linear to the number of pixels and disparity range, which results in a runtime of just 1-2s on typical test images. An in depth evaluation of the Mutual Information based matching cost demonstrates a tolerance against a wide range of radiometric transformations. Finally, examples of reconstructions from huge aerial frame and pushbroom images demonstrate that the presented ideas are working well on practical problems.
Secrets of Optical Flow Estimation and Their Principles
, 2010
"... The accuracy of optical flow estimation algorithms has been improving steadily as evidenced by results on the Middlebury optical flow benchmark. The typical formulation, however, has changed little since the work of Horn and Schunck. We attempt to uncover what has made recent advances possible throu ..."
Abstract
-
Cited by 195 (10 self)
- Add to MetaCart
(Show Context)
The accuracy of optical flow estimation algorithms has been improving steadily as evidenced by results on the Middlebury optical flow benchmark. The typical formulation, however, has changed little since the work of Horn and Schunck. We attempt to uncover what has made recent advances possible through a thorough analysis of how the objective function, the optimization method, and modern implementation practices influence accuracy. We discover that “classical” flow formulations perform surprisingly well when combined with modern optimization and implementation techniques. Moreover, we find that while median filtering of intermediate flow fields during optimization is a key to recent performance gains, it leads to higher energy solutions. To understand the principles behind this phenomenon, we derive a new objective that formalizes the median filtering heuristic. This objective includes a nonlocal term that robustly integrates flow estimates over large spatial neighborhoods. By modifying this new term to include information about flow and image boundaries we develop a method that ranks at the top of the Middlebury benchmark.
Guided Image Filtering
"... Abstract. In this paper, we propose a novel type of explicit image filter- guided filter. Derived from a local linear model, the guided filter generates the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided fil ..."
Abstract
-
Cited by 145 (1 self)
- Add to MetaCart
(Show Context)
Abstract. In this paper, we propose a novel type of explicit image filter- guided filter. Derived from a local linear model, the guided filter generates the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can perform as an edge-preserving smoothing operator like the popular bilateral filter [1], but has better behavior near the edges. It also has a theoretical connection with the matting Laplacian matrix [2], so is a more generic concept than a smoothing operator and can better utilize the structures in the guidance image. Moreover, the guidedfilterhasafastandnon-approximatelinear-time algorithm, whose computational complexity is independent of the filtering kernel size. We demonstrate that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications including noise reduction, detail smoothing/enhancement, HDR compression, image matting/feathering, haze removal, and joint upsampling. 1
Stereo Matching with Color-Weighted Correlation, Hierarchical BELIEF PROPAGATION AND OCCLUSION HANDLING
, 2009
"... In this paper, we formulate a stereo matching algorithm with careful handling of disparity, discontinuity, and occlusion. The algorithm works with a global matching stereo model based on an energy-minimization framework. The global energy contains two terms, the data term and the smoothness term. T ..."
Abstract
-
Cited by 126 (10 self)
- Add to MetaCart
In this paper, we formulate a stereo matching algorithm with careful handling of disparity, discontinuity, and occlusion. The algorithm works with a global matching stereo model based on an energy-minimization framework. The global energy contains two terms, the data term and the smoothness term. The data term is first approximated by a color-weighted correlation, then refined in occluded and low-texture areas in a repeated application of a hierarchical loopy belief propagation algorithm. The experimental results are evaluated on the Middlebury data sets, showing that our algorithm is the top performer among all the algorithms listed there.
Spatial-depth super resolution for range images
- In CVPR, 2007. 8
"... We present a new post-processing step to enhance the resolution of range images. Using one or two registered and potentially high-resolution color images as reference, we iteratively refine the input low-resolution range image, in terms of both its spatial resolution and depth precision. Evaluation ..."
Abstract
-
Cited by 116 (18 self)
- Add to MetaCart
(Show Context)
We present a new post-processing step to enhance the resolution of range images. Using one or two registered and potentially high-resolution color images as reference, we iteratively refine the input low-resolution range image, in terms of both its spatial resolution and depth precision. Evaluation using the Middlebury benchmark shows across-the-board improvement for sub-pixel accuracy. We also demonstrated its effectiveness for spatial resolution enhancement up to 100 × with a single reference image. 1.
Evaluation of cost functions for stereo matching
- In CVPR
, 2007
"... Stereo correspondence methods rely on matching costs for computing the similarity of image locations. In this paper we evaluate the insensitivity of different matching costs with respect to radiometric variations of the input images. We consider both pixel-based and window-based variants and measure ..."
Abstract
-
Cited by 107 (0 self)
- Add to MetaCart
(Show Context)
Stereo correspondence methods rely on matching costs for computing the similarity of image locations. In this paper we evaluate the insensitivity of different matching costs with respect to radiometric variations of the input images. We consider both pixel-based and window-based variants and measure their performance in the presence of global intensity changes (e.g., due to gain and exposure differences), local intensity changes (e.g., due to vignetting, non-Lambertian surfaces, and varying lighting), and noise. Using existing stereo datasets with ground-truth disparities as well as six new datasets taken under controlled changes of exposure and lighting, we evaluate the different costs with a local, a semi-global, and a global stereo method. 1. Introduction and Related
Evaluation of Stereo Matching Costs on Images with Radiometric Differences
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2009
"... Stereo correspondence methods rely on matching costs for computing the similarity of image locations. We evaluate the insensitivity of different costs for passive binocular stereo methods with respect to radiometric variations of the input images. We consider both pixel-based and window-based varian ..."
Abstract
-
Cited by 71 (2 self)
- Add to MetaCart
Stereo correspondence methods rely on matching costs for computing the similarity of image locations. We evaluate the insensitivity of different costs for passive binocular stereo methods with respect to radiometric variations of the input images. We consider both pixel-based and window-based variants like the absolute difference, the sampling-insensitive absolute difference, and normalized cross correlation, as well as their zero-mean versions. We also consider filters like LoG, mean, and bilateral background subtraction (BilSub) and non-parametric measures like Rank, SoftRank, Census, and Ordinal. Finally, hierarchical mutual information (HMI) is considered as pixelwise cost. Using stereo datasets with ground-truth disparities taken under controlled changes of exposure and lighting, we evaluate the costs with a local, a semi-global, and a global stereo method. We measure the performance of all costs in the presence of simulated and real radiometric differences, including exposure differences, vignetting, varying lighting and noise. Overall, the ranking of methods across all datasets and experiments appears to be consistent. Among the best costs are BilSub, which performs consistently very well for low radiometric differences; HMI, which is slightly better as pixel-wise matching cost in some cases and for strong image noise; and Census, which showed the best and most robust overall performance.
Efficient Large-Scale Stereo Matching
"... Abstract. In this paper we propose a novel approach to binocular stereo for fast matching of high-resolution images. Our approach builds a prior on the disparities by forming a triangulation on a set of support points which can be robustly matched, reducing the matching ambiguities of the remaining ..."
Abstract
-
Cited by 70 (8 self)
- Add to MetaCart
(Show Context)
Abstract. In this paper we propose a novel approach to binocular stereo for fast matching of high-resolution images. Our approach builds a prior on the disparities by forming a triangulation on a set of support points which can be robustly matched, reducing the matching ambiguities of the remaining points. This allows for efficient exploitation of the disparity search space, yielding accurate dense reconstruction without the need for global optimization. Moreover, our method automatically determines the disparity range and can be easily parallelized. We demonstrate the effectiveness of our approach on the large-scale Middlebury benchmark, and show that state-of-the-art performance can be achieved with significant speedups. Computing the left and right disparity maps for a one Megapixel image pair takes about one second on a single CPU core. 1