Results 1 - 10
of
326
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
- IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
, 2005
"... This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes vario ..."
Abstract
-
Cited by 1490 (23 self)
- Add to MetaCart
(Show Context)
This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes various limitations of current recommendation methods and discusses possible extensions that can improve recommendation capabilities and make recommender systems applicable to an even broader range of applications. These extensions include, among others, an improvement of understanding of users and items, incorporation of the contextual information into the recommendation process, support for multcriteria ratings, and a provision of more flexible and less intrusive types of recommendations.
Improving recommendation lists through topic diversification
, 2005
"... In this work we present topic diversification, a novel method designed to balance and diversify personalized recommendation lists in order to reflect the user’s complete spectrum of interests. Though being detrimental to average accuracy, we show that our method improves user satisfaction with recom ..."
Abstract
-
Cited by 293 (13 self)
- Add to MetaCart
(Show Context)
In this work we present topic diversification, a novel method designed to balance and diversify personalized recommendation lists in order to reflect the user’s complete spectrum of interests. Though being detrimental to average accuracy, we show that our method improves user satisfaction with recommendation lists, in particular for lists generated using the common item-based collaborative filtering algorithm. Our work builds upon prior research on recommender systems, looking at properties of recommendation lists as entities in their own right rather than specifically focusing on the accuracy of individual recommendations. We introduce the intra-list similarity metric to assess the topical diversity of recommendation lists and the topic diversification approach for decreasing the intra-list similarity. We evaluate our method using book recommendation data, including offline analysis on 361, 349 ratings and an online study involving more than 2, 100 subjects.
Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation
- IEEE TRANS. MED. IMAG
, 2004
"... Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptab ..."
Abstract
-
Cited by 250 (21 self)
- Add to MetaCart
(Show Context)
Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intrarater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters...
A Survey of Collaborative Filtering Techniques
, 2009
"... As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenge ..."
Abstract
-
Cited by 216 (0 self)
- Add to MetaCart
As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenges, such as data sparsity, scalability, synonymy, gray sheep, shilling attacks, privacy protection, etc., and their possible solutions. We then present three main categories of CF techniques: memory-based, model-based, and hybrid CF algorithms (that combine CF with other recommendation techniques), with examples for representative algorithms of each category, and analysis of their predictive performance and their ability to address the challenges. From basic techniques to the state-of-the-art, we attempt to present a comprehensive survey for CF techniques, which can be served as a roadmap for research and practice in this area.
MovieLens Unplugged: Experiences with an Occasionally Connected Recommender System
- InProceedings of ACM 2003 International Conference on Intelligent User Interfaces (IUI'03) (Accepted Poster
, 2003
"... Recommender systems have changed the way people shop online. Recommender systems on wireless mobile devices may have the same impact on the way people shop in stores. We present our experience with implementing a recommender system on a PDA that is occasionally connected to the network. This interfa ..."
Abstract
-
Cited by 129 (4 self)
- Add to MetaCart
(Show Context)
Recommender systems have changed the way people shop online. Recommender systems on wireless mobile devices may have the same impact on the way people shop in stores. We present our experience with implementing a recommender system on a PDA that is occasionally connected to the network. This interface helps users of the MovieLens movie recommendation service select movies to rent, buy, or see while away from their computer. The results of a nine month field study show that although there are several challenges to overcome, mobile recommender systems have the potential to provide value to their users today.
Unifying collaborative and content-based filtering
- In ICML
, 2004
"... Collaborative and content-based filtering are two paradigms that have been applied in the context of recommender systems and user preference prediction. This paper proposes a novel, unified approach that systematically integrates all available training information such as past user-item ratings as w ..."
Abstract
-
Cited by 110 (2 self)
- Add to MetaCart
(Show Context)
Collaborative and content-based filtering are two paradigms that have been applied in the context of recommender systems and user preference prediction. This paper proposes a novel, unified approach that systematically integrates all available training information such as past user-item ratings as well as attributes of items or users to learn a prediction function. The key ingredient of our method is the design of a suitable kernel or similarity function between user-item pairs that allows simultaneous generalization across the user and item dimensions. We propose an on-line algorithm (JRank) that generalizes perceptron learning. Experimental results on the EachMovie data set show significant improvements over standard approaches. 1.
Ontological user profiling in recommender systems
- ACM Transactions on Information Systems
, 2004
"... We explore a novel ontological approach to user profiling within recommender systems, working on the problem of recommending on-line academic research papers. Our two experimental systems, Quickstep and Foxtrot, create user profiles from unobtrusively monitored behaviour and relevance feedback, repr ..."
Abstract
-
Cited by 106 (1 self)
- Add to MetaCart
We explore a novel ontological approach to user profiling within recommender systems, working on the problem of recommending on-line academic research papers. Our two experimental systems, Quickstep and Foxtrot, create user profiles from unobtrusively monitored behaviour and relevance feedback, representing the profiles in terms of a research paper topic ontology. A novel profile visualization approach is taken to acquire profile feedback. Research papers are classified using ontological classes and collaborative recommendation algorithms used to recommend papers seen by similar people on their current topics of interest. Two small-scale experiments, with 24 subjects over 3 months, and a large-scale experiment, with 260 subjects over an academic year, are conducted to evaluate different aspects of our approach. Ontological inference is shown to improve user profiling, external ontological knowledge used to successfully bootstrap a recommender system and profile visualization employed to improve profiling accuracy. The overall performance of our ontological recommender systems are also presented and favourably compared to other systems in the literature.
Hybrid Web Recommender Systems
, 2007
"... Adaptive web sites may offer automated recommendations generated through any number of well-studied techniques including collaborative, content-based and knowledge-based recommendation. Each of these techniques has its own strengths and weaknesses. In search of better performance, researchers have ..."
Abstract
-
Cited by 92 (1 self)
- Add to MetaCart
Adaptive web sites may offer automated recommendations generated through any number of well-studied techniques including collaborative, content-based and knowledge-based recommendation. Each of these techniques has its own strengths and weaknesses. In search of better performance, researchers have combined recommendation techniques to build hybrid recommender systems. This chapter surveys the space of two-part hybrid recommender systems, comparing four different recommendation techniques and seven different hybridization strategies. Implementations of 41 hybrids including some novel combinations are examined and compared. The study finds that cascade and augmented hybrids work well, especially when combining two components of differing strengths.
A personalized system for conversational recommendations,
- Journal of Artificial Intelligence Research,
, 2004
"... Abstract Increased computing power and the Web have made information widely accessible. In turn, this has encouraged the development of recommendation systems that help users find items of interest, such as books or restaurants. Such systems are more useful when they personalize themselves to each ..."
Abstract
-
Cited by 75 (1 self)
- Add to MetaCart
(Show Context)
Abstract Increased computing power and the Web have made information widely accessible. In turn, this has encouraged the development of recommendation systems that help users find items of interest, such as books or restaurants. Such systems are more useful when they personalize themselves to each user's preferences, thus making the recommendation process more efficient and effective. In this paper, we present a new type of recommendation system that carries out a personalized dialogue with the user. This system -the Adaptive Place Advisor -treats item selection as an interactive, conversational process, with the program inquiring about item attributes and the user responding. The system incorporates a user model that contains item, attribute, and value preferences, which it updates during each conversation and maintains across sessions. The Place Advisor uses both the conversational context and the user model to retrieve candidate items from a case base. The system then continues to ask questions, using personalized heuristics to select which attribute to ask about next. Then, when only a few items remain, it presents them to the user in a personalized order. We report experimental results demonstrating the effectiveness of user modeling in reducing the time and number of interactions required to find a satisfactory item.
A Comprehensive Survey of Neighborhood-based Recommendation Methods.
- In Recommender Systems Handbook,
, 2011
"... Abstract Among collaborative recommendation approaches, methods based on nearest-neighbors still enjoy a huge amount of popularity, due to their simplicity, their efficiency, and their ability to produce accurate and personalized recommendations. This chapter presents a comprehensive survey of neig ..."
Abstract
-
Cited by 69 (0 self)
- Add to MetaCart
(Show Context)
Abstract Among collaborative recommendation approaches, methods based on nearest-neighbors still enjoy a huge amount of popularity, due to their simplicity, their efficiency, and their ability to produce accurate and personalized recommendations. This chapter presents a comprehensive survey of neighborhood-based methods for the item recommendation problem. In particular, the main benefits of such methods, as well as their principal characteristics, are described. Furthermore, this document addresses the essential decisions that are required while implementing a neighborhood-based recommender system, and gives practical information on how to make such decisions. Finally, the problems of sparsity and limited coverage, often observed in large commercial recommender systems, are discussed, and a few solutions to overcome these problems are presented.