Results 1 - 10
of
435
Anomaly Detection: A Survey
, 2007
"... Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and c ..."
Abstract
-
Cited by 540 (5 self)
- Add to MetaCart
(Show Context)
Anomaly detection is an important problem that has been researched within diverse research areas and application domains. Many anomaly detection techniques have been specifically developed for certain application domains, while others are more generic. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. We have grouped existing techniques into different categories based on the underlying approach adopted by each technique. For each category we have identified key assumptions, which are used by the techniques to differentiate between normal and anomalous behavior. When applying a given technique to a particular domain, these assumptions can be used as guidelines to assess the effectiveness of the technique in that domain. For each category, we provide a basic anomaly detection technique, and then show how the different existing techniques in that category are variants of the basic technique. This template provides an easier and succinct understanding of the techniques belonging to each category. Further, for each category, we identify the advantages and disadvantages of the techniques in that category. We also provide a discussion on the computational complexity of the techniques since it is an important issue in real application domains. We hope that this survey will provide a better understanding of the di®erent directions in which research has been done on this topic, and how techniques developed in one area can be applied in domains for which they were not intended to begin with.
Detecting intrusion using system calls: alternative data models
- In Proceedings of the IEEE Symposium on Security and Privacy
, 1999
"... Intrusion detection systems rely on a wide variety of observable data to distinguish between legitimate and illegitimate activities. In this paper we study one such observable— sequences of system calls into the kernel of an operating system. Using system-call data sets generated by several differen ..."
Abstract
-
Cited by 433 (3 self)
- Add to MetaCart
(Show Context)
Intrusion detection systems rely on a wide variety of observable data to distinguish between legitimate and illegitimate activities. In this paper we study one such observable— sequences of system calls into the kernel of an operating system. Using system-call data sets generated by several different programs, we compare the ability of different data modeling methods to represent normal behavior accurately and to recognize intrusions. We compare the following methods: Simple enumeration of observed sequences, comparison of relative frequencies of different sequences, a rule induction technique, and Hidden Markov Models (HMMs). We discuss the factors affecting the performance of each method, and conclude that for this particular problem, weaker methods than HMMs are likely sufficient. 1.
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract
-
Cited by 408 (0 self)
- Add to MetaCart
(Show Context)
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
A data mining framework for building intrusion detection models. In:
- IEEE Symposium on Security and Privacy,
, 1999
"... Abstract There is often the need to update an installed Intrusion Detection System (IDS) ..."
Abstract
-
Cited by 349 (22 self)
- Add to MetaCart
(Show Context)
Abstract There is often the need to update an installed Intrusion Detection System (IDS)
MAFIA: A maximal frequent itemset algorithm for transactional databases
- In ICDE
, 2001
"... We present a new algorithm for mining maximal frequent itemsets from a transactional database. Our algorithm is especially efficient when the itemsets in the database are very long. The search strategy of our algorithm integrates a depth-first traversal of the itemset lattice with effective pruning ..."
Abstract
-
Cited by 309 (3 self)
- Add to MetaCart
(Show Context)
We present a new algorithm for mining maximal frequent itemsets from a transactional database. Our algorithm is especially efficient when the itemsets in the database are very long. The search strategy of our algorithm integrates a depth-first traversal of the itemset lattice with effective pruning mechanisms. Our implementation of the search strategy combines a vertical bitmap representation of the database with an efficient relative bitmap compression schema. In a thorough experimental analysis of our algorithm on real data, we isolate the effect of the individual components of the algorithm. Our performance numbers show that our algorithm outperforms previous work by a factor of three to five. 1
A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data
- Applications of Data Mining in Computer Security
, 2002
"... Abstract Most current intrusion detection systems employ signature-based methods or data mining-based methods which rely on labeled training data. This training data is typically expensive to produce. We present a new geometric framework for unsupervised anomaly detection, which are algorithms that ..."
Abstract
-
Cited by 238 (9 self)
- Add to MetaCart
(Show Context)
Abstract Most current intrusion detection systems employ signature-based methods or data mining-based methods which rely on labeled training data. This training data is typically expensive to produce. We present a new geometric framework for unsupervised anomaly detection, which are algorithms that are designed to process unlabeled data. In our framework, data elements are mapped to a feature space which is typically a vector space! d. Anomalies are detected by determining which points lies in sparse
Computer Immunology
- Communications of the ACM
, 1996
"... Natural immune systems protect animals from dangerous foreign pathogens, including bacteria, viruses, parasites, and toxins. Their role in the body is analogous to that of computer security systems in computing. Although there are many differences between living organisms and computer systems, this ..."
Abstract
-
Cited by 226 (8 self)
- Add to MetaCart
Natural immune systems protect animals from dangerous foreign pathogens, including bacteria, viruses, parasites, and toxins. Their role in the body is analogous to that of computer security systems in computing. Although there are many differences between living organisms and computer systems, this article argues that the similarities are compelling and could point the way to improved computer security. Improvements can be achieved by designing computer immune systems that have some of the important properties illustrated by natural immune systems. These include multi-layered protection, highly distributed detection and memory systems, diversity of detection ability across individuals, inexact matching strategies, and sensitivity to most new foreign patterns. We first give an overview of how the immune system relates to computer security. We then illustrate these ideas with two examples.
A Fast Automaton-Based Method for Detecting Anomalous Program Behaviors
- In Proceedings of the 2001 IEEE Symposium on Security and Privacy
, 2001
"... Forrest et al introduced a new intrusion detection approach that identifies anomalous sequences of system calls executed by programs. Since their work, anomaly detection on system call sequences has become perhaps the most successful approach for detecting novel intrusions. A natural way for learnin ..."
Abstract
-
Cited by 224 (5 self)
- Add to MetaCart
(Show Context)
Forrest et al introduced a new intrusion detection approach that identifies anomalous sequences of system calls executed by programs. Since their work, anomaly detection on system call sequences has become perhaps the most successful approach for detecting novel intrusions. A natural way for learning sequences is to use a finite-state automaton (FSA). However, previous research seemed to indicate that FSA-learning is computationally expensive, that it cannot be completely automated, or that the space usage of the FSA may be excessive. We present a new approach in this paper that overcomes these difficulties. Our approach builds a compact FSA in a fully automatic and efficient manner, without requiring access to source code for programs. The space requirements for the FSA is low --- of the order of a few kilobytes for typical programs. The FSA uses only a constant time per system call during the learning as well as detection period. This factor leads to low overheads for intrusion detection. Unlike many of the previous techniques, our FSA-technique can capture both short term and long term temporal relationships among system calls, and thus perform more accurate detection. For instance, the FSA can capture common program structures such as branches, joins, loops etc. This enables our approach to generalize and predict future behaviors from past behaviors. For instance, if a program executed a loop once in an execution, the FSA approach can generalize and predict that the same loop may be executed zero or more times in subsequent executions. As a result, the training periods needed for our FSA based approach are shorter. Moreover, false positives are reduced without increasing the likelihood of missing attacks. This paper describes our FSA based technique and presents a ...
Intrusion Detection Techniques for Mobile Wireless Networks
, 2003
"... this paper, we examine the vulnerabilities of wireless networks and argue that we must include intrusion detection in the security architecture for mobile computing environment. We have developed such an architecture and evaluated a key mechanism in this architecture, anomaly detection for mobile ..."
Abstract
-
Cited by 224 (1 self)
- Add to MetaCart
this paper, we examine the vulnerabilities of wireless networks and argue that we must include intrusion detection in the security architecture for mobile computing environment. We have developed such an architecture and evaluated a key mechanism in this architecture, anomaly detection for mobile ad-hoc network, through simulation experiments
A Framework for Constructing Features and Models for Intrusion Detection Systems
- ACM Transactions on Information and System Security
, 2000
"... Intrusion detection (ID) is an important component of infrastructure protection mechanisms. Intrusion detection systems (IDSs) need to be accurate, adaptive, and extensible. Given these requirements and the complexities of today’s network environments, we need a more systematic and automated IDS dev ..."
Abstract
-
Cited by 223 (7 self)
- Add to MetaCart
(Show Context)
Intrusion detection (ID) is an important component of infrastructure protection mechanisms. Intrusion detection systems (IDSs) need to be accurate, adaptive, and extensible. Given these requirements and the complexities of today’s network environments, we need a more systematic and automated IDS development process rather than the pure knowledge encoding and engineering approaches. This article describes a novel framework, MADAM ID, for Mining Audit Data for Automated Models for Intrusion Detection. This framework uses data mining algorithms to compute activity patterns from system audit data and extracts predictive features from the patterns. It then applies machine learning algorithms to the audit records that are processed according to the feature definitions to generate intrusion detection rules. Results from the 1998 DARPA Intrusion Detection Evaluation showed that our ID model was one of the best performing of all the participating systems. We also briefly discuss our experience in converting the detection models produced by off-line data mining programs to real-time modules of existing IDSs. Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Security and protection (e.g., firewalls); C.2.3 [Computer-Communication Networks]: