Results 1 - 10
of
1,521
Reinforcement Learning I: Introduction
, 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract
-
Cited by 5614 (118 self)
- Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search) plus learning (association, memory). We argue that RL is the only field that seriously addresses the special features of the problem of learning from interaction to achieve long-term goals.
Reinforcement learning: a survey
- Journal of Artificial Intelligence Research
, 1996
"... This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem ..."
Abstract
-
Cited by 1714 (25 self)
- Add to MetaCart
This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word "reinforcement." The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
Integrated architectures for learning, planning, and reacting based on approximating dynamic programming
- Proceedings of the SevenLh International Conference on Machine Learning
, 1990
"... gutton~gte.com Dyna is an AI architecture that integrates learning, planning, and reactive execution. Learning methods are used in Dyna both for compiling planning results and for updating a model of the effects of the agent's actions on the world. Planning is incremental and can use the probab ..."
Abstract
-
Cited by 563 (22 self)
- Add to MetaCart
(Show Context)
gutton~gte.com Dyna is an AI architecture that integrates learning, planning, and reactive execution. Learning methods are used in Dyna both for compiling planning results and for updating a model of the effects of the agent's actions on the world. Planning is incremental and can use the probabilistic and ofttimes incorrect world models generated by learning processes. Execution is fully reactive in the sense that no planning intervenes between perception and action. Dyna relies on machine learning methods for learning from examples--these are among the basic building blocks making up the architecture--yet is not tied to any particular method. This paper
Simple statistical gradient-following algorithms for connectionist reinforcement learning
- Machine Learning
, 1992
"... Abstract. This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units. These algorithms, called REINFORCE algorithms, are shown to make weight adjustments in a direction that lies along the gradient of expected reinfor ..."
Abstract
-
Cited by 449 (0 self)
- Add to MetaCart
Abstract. This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units. These algorithms, called REINFORCE algorithms, are shown to make weight adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement tasks and certain limited forms of delayed-reinforcement tasks, and they do this without explicitly computing gradient estimates or even storing information from which such estimates could be computed. Specific examples of such algorithms are presented, some of which bear a close relationship to certain existing algorithms while others are novel but potentially interesting in their own right. Also given are results that show how such algorithms can be naturally integrated with backpropagation. We close with a brief discussion of a number of additional issues surrounding the use of such algorithms, including what is known about their limiting behaviors as well as further considerations that might be used to help develop similar but potentially more powerful reinforcement learning algorithms.
Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding
- Advances in Neural Information Processing Systems 8
, 1996
"... On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results have ..."
Abstract
-
Cited by 433 (20 self)
- Add to MetaCart
(Show Context)
On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results have been mixed. In particular, Boyan and Moore reported at last year's meeting a series of negative results in attempting to apply dynamic programming together with function approximation to simple control problems with continuous state spaces. In this paper, we present positive results for all the control tasks they attempted, and for one that is significantly larger. The most important differences are that we used sparse-coarse-coded function approximators (CMACs) whereas they used mostly global function approximators, and that we learned online whereas they learned offline. Boyan and Moore and others have suggested that the problems they encountered could be solved by using actual outcomes (...
The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity
- PSYCHOLOGICAL REVIEW 109:679–709
, 2002
"... The authors present a unified account of 2 neural systems concerned with the development and expression of adaptive behaviors: a mesencephalic dopamine system for reinforcement learning and a “generic ” error-processing system associated with the anterior cingulate cortex. The existence of the error ..."
Abstract
-
Cited by 430 (20 self)
- Add to MetaCart
(Show Context)
The authors present a unified account of 2 neural systems concerned with the development and expression of adaptive behaviors: a mesencephalic dopamine system for reinforcement learning and a “generic ” error-processing system associated with the anterior cingulate cortex. The existence of the error-processing system has been inferred from the error-related negativity (ERN), a component of the event-related brain potential elicited when human participants commit errors in reaction-time tasks. The authors propose that the ERN is generated when a negative reinforcement learning signal is conveyed to the anterior cingulate cortex via the mesencephalic dopamine system and that this signal is used by the anterior cingulate cortex to modify performance on the task at hand. They provide support for this proposal using both computational modeling and psychophysiological experimentation. Human beings learn from the consequences of their actions. Thorndike (1911/1970) originally described this phenomenon with his law of effect, which made explicit the commonsense notion that actions that are followed by feelings of satisfaction are more likely to be generated again in the future, whereas actions that are followed by negative outcomes are less likely to reoccur. This
Forward models: Supervised learning with a distal teacher
- Cognitive Science
, 1992
"... Internal models of the environment have an important role to play in adaptive systems in general and are of particular importance for the supervised learning paradigm. In this paper we demonstrate that certain classical problems associated with the notion of the \teacher " in supervised lea ..."
Abstract
-
Cited by 421 (9 self)
- Add to MetaCart
Internal models of the environment have an important role to play in adaptive systems in general and are of particular importance for the supervised learning paradigm. In this paper we demonstrate that certain classical problems associated with the notion of the \teacher " in supervised learning can be solved by judicious use of learned internal models as components of the adaptive system. In particular, we show how supervised learning algorithms can be utilized in cases in which an unknown dynamical system intervenes between actions and desired outcomes. Our approach applies to any supervised learning algorithm that is capable of learning in multi-layer networks.
Practical Issues in Temporal Difference Learning
- Machine Learning
, 1992
"... This paper examines whether temporal difference methods for training connectionist networks, such as Suttons's TD(lambda) algorithm can be successfully applied to complex real-world problems. A number of important practical issues are identified and discussed from a general theoretical perspect ..."
Abstract
-
Cited by 415 (2 self)
- Add to MetaCart
This paper examines whether temporal difference methods for training connectionist networks, such as Suttons's TD(lambda) algorithm can be successfully applied to complex real-world problems. A number of important practical issues are identified and discussed from a general theoretical perspective. These practical issues are then examined in the context of a case study in which TD(lambda) is applied to learning the game of backgammon from the outcome of self-play. This is apparently the first application of this algorithm to a complex nontrivial task. It is found that, with zero knowledge built in, the network is able to learn from scratch to play the entire game at a fairly strong intermediate level of performance which is clearly better than conventional commercial programs and which in fact surpasses comparable networks trained on a massive human expert data set. This indicates that TD learning may work better in practice than one would expect based on current theory, and it suggests that further analysis of TD methods, as well as applications in other complex domains may be worth investigating.
Connectionist Learning Procedures
- ARTIFICIAL INTELLIGENCE
, 1989
"... A major goal of research on networks of neuron-like processing units is to discover efficient learning procedures that allow these networks to construct complex internal representations of their environment. The learning procedures must be capable of modifying the connection strengths in such a way ..."
Abstract
-
Cited by 410 (9 self)
- Add to MetaCart
A major goal of research on networks of neuron-like processing units is to discover efficient learning procedures that allow these networks to construct complex internal representations of their environment. The learning procedures must be capable of modifying the connection strengths in such a way that internal units which are not part of the input or output come to represent important features of the task domain. Several interesting gradient-descent procedures have recently been discovered. Each connection computes the derivative, with respect to the connection strength, of a global measure of the error in the performance of the network. The strength is then adjusted in the direction that decreases the error. These relatively simple, gradient-descent learning procedures work well for small tasks and the new challenge is to find ways of improving their convergence rate and their generalization abilities so that they can be applied to larger, more realistic tasks.