Results 1  10
of
147
Graphical Models for Game Theory
, 2001
"... We introduce a compact graphtheoretic representation for multiparty game theory. Our main result is a provably correct and efficient algorithm for computing approximate Nash equilibria in onestage games represented by trees or sparse graphs. ..."
Abstract

Cited by 286 (23 self)
 Add to MetaCart
We introduce a compact graphtheoretic representation for multiparty game theory. Our main result is a provably correct and efficient algorithm for computing approximate Nash equilibria in onestage games represented by trees or sparse graphs.
Multiagent influence diagrams for representing and solving games
 GAMES AND ECONOMIC BEHAVIOR
, 2001
"... The traditional representations of games using the extensive form or the strategic (normal) form obscure much of the structure that is present in realworld games. In this paper, we propose a new representation language for general multiplayer games — multiagent influence diagrams (MAIDs). This rep ..."
Abstract

Cited by 188 (2 self)
 Add to MetaCart
The traditional representations of games using the extensive form or the strategic (normal) form obscure much of the structure that is present in realworld games. In this paper, we propose a new representation language for general multiplayer games — multiagent influence diagrams (MAIDs). This representation extends graphical models for probability distributions to a multiagent decisionmaking context. MAIDs explicitly encode structure involving the dependence relationships among variables. As a consequence, we can define a notion of strategic relevance of one decision variable to another: ¢¡ is strategically relevant to if, to optimize the decision rule at, the decision maker needs to take into consideration the decision rule at ¡. We provide a sound and complete graphical criterion for determining strategic relevance. We then show how strategic relevance can be used to detect structure in games, allowing a large game to be broken up into a set of interacting smaller games, which can be solved in sequence. We show that this decomposition can lead to substantial savings in the computational cost of finding Nash equilibria in these games.
Nash QLearning for GeneralSum Stochastic Games
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2003
"... We extend Qlearning to a noncooperative multiagent context, using the framework of generalsum stochastic games. A learning agent maintains Qfunctions over joint actions, and performs updates based on assuming Nash equilibrium behavior over the current Qvalues. This learning protocol provably conv ..."
Abstract

Cited by 138 (0 self)
 Add to MetaCart
We extend Qlearning to a noncooperative multiagent context, using the framework of generalsum stochastic games. A learning agent maintains Qfunctions over joint actions, and performs updates based on assuming Nash equilibrium behavior over the current Qvalues. This learning protocol provably converges given certain restrictions on the stage games (defined by Qvalues) that arise during learning. Experiments with a pair of twoplayer grid games suggest that such restrictions on the game structure are not necessarily required. Stage games encountered during learning in both grid environments violate the conditions. However, learning consistently converges in the first grid game, which has a unique equilibrium Qfunction, but sometimes fails to converge in the second, which has three different equilibrium Qfunctions. In a comparison of offline learning performance in both games, we find agents are more likely to reach a joint optimal path with Nash Qlearning than with a singleagent Qlearning method. When at least one agent adopts Nash Qlearning, the performance of both agents is better than using singleagent Qlearning. We have also implemented an online version of Nash Qlearning that balances exploration with exploitation, yielding improved performance.
Representations and Solutions for GameTheoretic Problems
 Artificial Intelligence
, 1997
"... A system with multiple interacting agents (whether artificial or human) is often best analyzed using gametheoretic tools. Unfortunately, while the formal foundations are wellestablished, standard computational techniques for gametheoretic reasoning are inadequate for dealing with realistic games. ..."
Abstract

Cited by 131 (0 self)
 Add to MetaCart
A system with multiple interacting agents (whether artificial or human) is often best analyzed using gametheoretic tools. Unfortunately, while the formal foundations are wellestablished, standard computational techniques for gametheoretic reasoning are inadequate for dealing with realistic games. This paper describes the Gala system, an implemented system that allows the specification and efficient solution of large imperfect information games. The system contains the first implementation of a recent algorithm, due to Koller, Megiddo, and von Stengel. Experimental results from the system demonstrate that the algorithm is exponentially faster than the standard algorithm in practice, not just in theory. It therefore allows the solution of games that are orders of magnitude larger than were previously possible. The system also provides a new declarative language for compactly and naturally representing games by their rules. As a whole, the Gala system provides the capability for automa...
Playing large games using simple strategies
 IN: PROC. OF THE 4TH ACM CONF. ON EL. COMMERCE (EC ’03). ASSOC. OF COMP. MACH
, 2003
"... We prove the existence of Nash equilibrium strategies with support logarithmic in the number of pure strategies. We also show that the payoffs to all players in any (exact) Nash equilibrium can be approximated by the payoffs to the players in some such logarithmic support Nash equilibrium. These ..."
Abstract

Cited by 122 (4 self)
 Add to MetaCart
(Show Context)
We prove the existence of Nash equilibrium strategies with support logarithmic in the number of pure strategies. We also show that the payoffs to all players in any (exact) Nash equilibrium can be approximated by the payoffs to the players in some such logarithmic support Nash equilibrium. These strategies are also uniform on a multiset of logarithmic size and therefore this leads to a quasipolynomial algorithm for computing an Nash equilibrium. To our knowledge this is the rst subexponential algorithm for finding an Nash equilibrium. Our results hold for any multipleplayer game as long as the number of players is a constant (i.e., it is independent of the number of pure strategies). A similar argument also proves that for a xed number of players m, the payos to all players in any mtuple of mixed strategies can be approximated by the payos in some mtuple of constant support strategies. We also prove that if the payoff matrices of a two person game have low rank then the game has an exact Nash equilibrium with small support. This implies that if the payoff matrices can be well approximated by low rank matrices, the game has an equilibrium with small support. It also implies that if the payo matrices have constant rank we can compute an exact Nash equilibrium in polynomial time.
The Structure and Complexity of Nash Equilibria for a Selfish Routing Game
, 2002
"... In this work, we study the combinatorial structure and the computational complexity of Nash equilibria for a certain game that models sel sh routing over a network consisting of m parallel links. We assume a collection of n users, each employing a mixed strategy, which is a probability distribu ..."
Abstract

Cited by 120 (27 self)
 Add to MetaCart
(Show Context)
In this work, we study the combinatorial structure and the computational complexity of Nash equilibria for a certain game that models sel sh routing over a network consisting of m parallel links. We assume a collection of n users, each employing a mixed strategy, which is a probability distribution over links, to control the routing of its own assigned trac. In a Nash equilibrium, each user sel shly routes its trac on those links that minimize its expected latency cost, given the network congestion caused by the other users. The social cost of a Nash equilibrium is the expectation, over all random choices of the users, of the maximum, over all links, latency through a link.
Simple Search Methods for Finding a Nash Equilibrium
 Games and Economic Behavior
, 2004
"... We present two simple search methods for computing a sample Nash equilibrium in a normalform game: one for 2player games and one for nplayer games. We test these algorithms on many classes of games, and show that they perform well against the state of the art the LemkeHowson algorithm for ..."
Abstract

Cited by 112 (3 self)
 Add to MetaCart
(Show Context)
We present two simple search methods for computing a sample Nash equilibrium in a normalform game: one for 2player games and one for nplayer games. We test these algorithms on many classes of games, and show that they perform well against the state of the art the LemkeHowson algorithm for 2player games, and Simplicial Subdivision and GovindanWilson for nplayer games.
Computable Markovperfect industry dynamics, Working paper
, 2008
"... We provide a general model of dynamic competition in an oligopolistic industry with investment, entry, and exit. To ensure that there exists a computationally tractable Markov perfect equilibrium, we introduce firm heterogeneity in the form of randomly drawn, privately known scrap values and setup c ..."
Abstract

Cited by 103 (12 self)
 Add to MetaCart
We provide a general model of dynamic competition in an oligopolistic industry with investment, entry, and exit. To ensure that there exists a computationally tractable Markov perfect equilibrium, we introduce firm heterogeneity in the form of randomly drawn, privately known scrap values and setup costs into the model. Our game of incomplete information always has an equilibrium in cutoff entry/exit strategies. In contrast, the existence of an equilibrium in the Ericson & Pakes (1995) model of industry dynamics requires admissibility of mixed entry/exit strategies, contrary to the assertion in their paper, that existing algorithms cannot cope with. In addition, we provide a condition on the model’s primitives that ensures that the equilibrium is in pure investment strategies. Building on this basic existence result, we first show that a symmetric equilibrium exists under appropriate assumptions on the model’s primitives. Second, we show that, as the distribution of the random scrap values/setup costs becomes degenerate, equilibria in cutoff entry/exit strategies converge to equilibria in mixed entry/exit strategies of the game of complete information. 1
Run the GAMUT: A comprehensive approach to evaluating gametheoretic algorithms
 In AAMAS04
, 2004
"... We present GAMUT 1, a suite of game generators designed for testing gametheoretic algorithms. We explain why such a generator is necessary, offer a way of visualizing relationships between the sets of games supported by GAMUT, and give an overview of GAMUT’s architecture. We highlight the importanc ..."
Abstract

Cited by 90 (8 self)
 Add to MetaCart
(Show Context)
We present GAMUT 1, a suite of game generators designed for testing gametheoretic algorithms. We explain why such a generator is necessary, offer a way of visualizing relationships between the sets of games supported by GAMUT, and give an overview of GAMUT’s architecture. We highlight the importance of using comprehensive test data by benchmarking existing algorithms. We show surprisingly large variation in algorithm performance across different sets of games for two widelystudied problems: computing Nash equilibria and multiagent learning in repeated games. 2 1.
Pure Nash Equilibria: Hard and Easy Games
"... In this paper we investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NPhard, while deciding whether a game has a strong Nash equilibrium is Stcomplete. We then s ..."
Abstract

Cited by 81 (4 self)
 Add to MetaCart
(Show Context)
In this paper we investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NPhard, while deciding whether a game has a strong Nash equilibrium is Stcomplete. We then study practically relevant restrictions that lower the complexity. In particular, we are interested in quantitative and qualitative restrictions of the way each player's move depends on moves of other players. We say that a game has small neighborhood if the &quot; utility function for each player depends only on (the actions of) a logarithmically small number of other players, The dependency structure of a game G can he expressed by a graph G(G) or by a hypergraph II(G). Among other results, we show that if jC has small neighborhood and if II(G) has botmdecl hypertree width (or if G(G) has bounded treewidth), then finding pure Nash and Pareto equilibria is feasible in polynomial time. If the game is graphical, then these problems are LOGCFLcomplete and thus in the class _NC ~ of highly parallelizable problems. 1 Introduction and Overview of Results The theory of strategic games and Nash equilibria has important applications in economics and decision making [31, 2]. Determining whether Nash equilibria exist, and effectively computing