Results 1  10
of
95
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 555 (22 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Offtheshelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple firstorder and easytoimplement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {X k, Y k} and at each step, mainly performs a softthresholding operation on the singular values of the matrix Y k. There are two remarkable features making this attractive for lowrank matrix completion problems. The first is that the softthresholding operation is applied to a sparse matrix; the second is that the rank of the iterates {X k} is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On
The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted LowRank Matrices
, 2009
"... ..."
(Show Context)
Fixed point and Bregman iterative methods for matrix rank minimization
 MATH. PROGRAM., SER. A
, 2008
"... ..."
The Convex Geometry of Linear Inverse Problems
, 2010
"... In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr ..."
Abstract

Cited by 189 (20 self)
 Add to MetaCart
In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered are those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include wellstudied cases such as sparse vectors (e.g., signal processing, statistics) and lowrank matrices (e.g., control, statistics), as well as several others including sums of a few permutations matrices (e.g., ranked elections, multiobject tracking), lowrank tensors (e.g., computer vision, neuroscience), orthogonal matrices (e.g., machine learning), and atomic measures (e.g., system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial
An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
, 2009
"... ..."
(Show Context)
NESTA: A Fast and Accurate FirstOrder Method for Sparse Recovery
, 2009
"... Accurate signal recovery or image reconstruction from indirect and possibly undersampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel firstorder ..."
Abstract

Cited by 171 (2 self)
 Add to MetaCart
(Show Context)
Accurate signal recovery or image reconstruction from indirect and possibly undersampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel firstorder methods in convex optimization, most notably Nesterov’s smoothing technique, this paper introduces a fast and accurate algorithm for solving common recovery problems in signal processing. In the spirit of Nesterov’s work, one of the key ideas of this algorithm is a subtle averaging of sequences of iterates, which has been shown to improve the convergence properties of standard gradientdescent algorithms. This paper demonstrates that this approach is ideally suited for solving largescale compressed sensing reconstruction problems as 1) it is computationally efficient, 2) it is accurate and returns solutions with several correct digits, 3) it is flexible and amenable to many kinds of reconstruction problems, and 4) it is robust in the sense that its excellent performance across a wide range of problems does not depend on the fine tuning of several parameters. Comprehensive numerical experiments on realistic signals exhibiting a large dynamic range show that this algorithm compares favorably with recently proposed stateoftheart methods. We also apply the algorithm to solve other problems for which there are fewer alternatives, such as totalvariation minimization, and
Templates for Convex Cone Problems with Applications to Sparse Signal Recovery
, 2010
"... This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, app ..."
Abstract

Cited by 122 (6 self)
 Add to MetaCart
This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal firstorder method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the totalvariation norm, ‖W x‖1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with stateoftheart methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient largescale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms. Keywords. Optimal firstorder methods, Nesterov’s accelerated descent algorithms, proximal algorithms, conic duality, smoothing by conjugation, the Dantzig selector, the LASSO, nuclearnorm minimization.
CurveletWavelet Regularized Split Bregman Iteration for Compressed Sensing
"... Compressed sensing is a new concept in signal processing. Assuming that a signal can be represented or approximated by only a few suitably chosen terms in a frame expansion, compressed sensing allows to recover this signal from much fewer samples than the ShannonNyquist theory requires. Many images ..."
Abstract

Cited by 119 (6 self)
 Add to MetaCart
(Show Context)
Compressed sensing is a new concept in signal processing. Assuming that a signal can be represented or approximated by only a few suitably chosen terms in a frame expansion, compressed sensing allows to recover this signal from much fewer samples than the ShannonNyquist theory requires. Many images can be sparsely approximated in expansions of suitable frames as wavelets, curvelets, wave atoms and others. Generally, wavelets represent pointlike features while curvelets represent linelike features well. For a suitable recovery of images, we propose models that contain weighted sparsity constraints in two different frames. Given the incomplete measurements f = Φu + ɛ with the measurement matrix Φ ∈ R K×N, K<<N, we consider a jointly sparsityconstrained optimization problem of the form argmin{‖ΛcΨcu‖1 + ‖ΛwΨwu‖1 + u 1 2‖f − Φu‖22}. Here Ψcand Ψw are the transform matrices corresponding to the two frames, and the diagonal matrices Λc, Λw contain the weights for the frame coefficients. We present efficient iteration methods to solve the optimization problem, based on Alternating Split Bregman algorithms. The convergence of the proposed iteration schemes will be proved by showing that they can be understood as special cases of the DouglasRachford Split algorithm. Numerical experiments for compressed sensing based Fourierdomain random imaging show good performances of the proposed curveletwavelet regularized split Bregman (CWSpB) methods,whereweparticularlyuseacombination of wavelet and curvelet coefficients as sparsity constraints.
Fast convex optimization algorithms for exact recovery of a corrupted lowrank matrix
 In Intl. Workshop on Comp. Adv. in MultiSensor Adapt. Processing, Aruba, Dutch Antilles
, 2009
"... Abstract. This paper studies algorithms for solving the problem of recovering a lowrank matrix with a fraction of its entries arbitrarily corrupted. This problem can be viewed as a robust version of classical PCA, and arises in a number of application domains, including image processing, web data r ..."
Abstract

Cited by 90 (9 self)
 Add to MetaCart
(Show Context)
Abstract. This paper studies algorithms for solving the problem of recovering a lowrank matrix with a fraction of its entries arbitrarily corrupted. This problem can be viewed as a robust version of classical PCA, and arises in a number of application domains, including image processing, web data ranking, and bioinformatic data analysis. It was recently shown that under surprisingly broad conditions, it can be exactly solved via a convex programming surrogate that combines nuclear norm minimization and ℓ1norm minimization. This paper develops and compares two complementary approaches for solving this convex program. The first is an accelerated proximal gradient algorithm directly applied to the primal; while the second is a gradient algorithm applied to the dual problem. Both are several orders of magnitude faster than the previous stateoftheart algorithm for this problem, which was based on iterative thresholding. Simulations demonstrate the performance improvement that can be obtained via these two algorithms, and clarify their relative merits.
Bregman iterative algorithms for ℓ1minimization with applications to compressed sensing
 SIAM J. IMAGING SCI
, 2008
"... We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of 1 insta ..."
Abstract

Cited by 84 (15 self)
 Add to MetaCart
(Show Context)
We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of 1 instances of the unconstrained problem minu∈Rn μ‖u‖1 + 2 ‖Au−fk ‖ 2 2 for given matrix A and vector f k. We show analytically that this iterative approach yields exact solutions in a finite number of steps and present numerical results that demonstrate that as few as two to six iterations are sufficient in most cases. Our approach is especially useful for many compressed sensing applications where matrixvector operations involving A and A ⊤ can be computed by fast transforms. Utilizing a fast fixedpoint continuation solver that is based solely on such operations for solving the above unconstrained subproblem, we were able to quickly solve huge instances of compressed sensing problems on a standard PC.