Results 1  10
of
157
Alternatingtime Temporal Logic
 Journal of the ACM
, 1997
"... Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract

Cited by 620 (53 self)
 Add to MetaCart
(Show Context)
Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general variety of temporal logic: alternatingtime temporal logic offers selective quantification over those paths that are possible outcomes of games, such as the game in which the system and the environment alternate moves. While lineartime and branchingtime logics are natural specification languages for closed systems, alternatingtime logics are natural specification languages for open systems. For example, by preceding the temporal operator "eventually" with a selective path quantifier, we can specify that in the game between the system and the environment, the system has a strategy to reach a certain state. Also the problems of receptiveness, realizability, and controllability can be formulated as modelchecking problems for alternatingtime formulas.
Synthesis of reactive(1) designs
 In Proc. Verification, Model Checking, and Abstract Interpretation (VMCAI’06
, 2006
"... Abstract. We consider the problem of synthesizing digital designs from their LTL specification. In spite of the theoretical double exponential lower bound for the general case, we show that for many expressive specifications of hardware designs the problem can be solved in time N 3, where N is the s ..."
Abstract

Cited by 126 (9 self)
 Add to MetaCart
(Show Context)
Abstract. We consider the problem of synthesizing digital designs from their LTL specification. In spite of the theoretical double exponential lower bound for the general case, we show that for many expressive specifications of hardware designs the problem can be solved in time N 3, where N is the size of the state space of the design. We describe the context of the problem, as part of the Prosyd European Project which aims to provide a propertybased development flow for hardware designs. Within this project, synthesis plays an important role, first in order to check whether a given specification is realizable, and then for synthesizing part of the developed system. The class of LTL formulas considered is that of Generalized Reactivity(1) (generalized Streett(1)) formulas, i.e., formulas of the form: ( p1 ∧ · · · ∧ pm) → ( q1 ∧ · · · ∧ qn) where each pi, qi is a boolean combination of atomic propositions. We also consider the more general case in which each pi, qi is an arbitrary past LTL formula over atomic propositions. For this class of formulas, we present an N 3time algorithm which checks whether such a formula is realizable, i.e., there exists a circuit which satisfies the formula under any set of inputs provided by the environment. In the case that the specification is realizable, the algorithm proceeds to construct an automaton which represents one of the possible implementing circuits. The automaton is computed and presented symbolically. 1
Effective Synthesis of Switching Controllers for Linear Systems
, 2000
"... In this work we suggest a novel methodology for synthesizing switching controllers for continuous and hybrid systems whose dynamics are defined by linear differential equations. We formulate the synthesis problem as finding the conditions upon which a controller should switch the behavior of the sys ..."
Abstract

Cited by 110 (8 self)
 Add to MetaCart
(Show Context)
In this work we suggest a novel methodology for synthesizing switching controllers for continuous and hybrid systems whose dynamics are defined by linear differential equations. We formulate the synthesis problem as finding the conditions upon which a controller should switch the behavior of the system from one "mode" to another in order to avoid a set of bad states, and propose an abstract algorithm which solves the problem by an iterative computation of reachable states. We have implemented a concrete version of the algorithm, which uses a new approximation scheme for reachability analysis of linear systems.
Efficient onthefly algorithms for the analysis of timed games
 IN CONCUR 05, LNCS 3653
, 2005
"... In this paper, we propose a first efficient onthefly algorithm for solving games based on timed game automata with respect to reachability and safety properties. The algorithm we propose is a symbolic extension of the onthefly algorithm suggested by Liu & Smolka [15] for lineartime modelc ..."
Abstract

Cited by 91 (26 self)
 Add to MetaCart
(Show Context)
In this paper, we propose a first efficient onthefly algorithm for solving games based on timed game automata with respect to reachability and safety properties. The algorithm we propose is a symbolic extension of the onthefly algorithm suggested by Liu & Smolka [15] for lineartime modelchecking of finitestate systems. Being onthefly, the symbolic algorithm may terminate long before having explored the entire statespace. Also the individual steps of the algorithm are carried out efficiently by the use of socalled zones as the underlying data structure. Various optimizations of the basic symbolic algorithm are proposed as well as methods for obtaining timeoptimal winning strategies (for reachability games). Extensive evaluation of an experimental implementation of the algorithm yields very encouraging performance results.
Optimal strategies in priced timed game automata
 In FSTTCS 04, LNCS 3328
, 2004
"... Abstract. Priced timed (game) automata extend timed (game) automata with costs on both locations and transitions. In this paper we focus on reachability games for priced timed game automata and prove that the optimal cost for winning such a game is computable under conditions concerning the nonzeno ..."
Abstract

Cited by 63 (27 self)
 Add to MetaCart
(Show Context)
Abstract. Priced timed (game) automata extend timed (game) automata with costs on both locations and transitions. In this paper we focus on reachability games for priced timed game automata and prove that the optimal cost for winning such a game is computable under conditions concerning the nonzenoness of cost and we prove that it is decidable. Under stronger conditions (strictness of constraints) we prove that in case an optimal strategy exists, we can compute a statebased winning optimal strategy. 1
The Element of Surprise in Timed Games
"... We consider concurrent twoperson games played in real time, in which the players decide both which action to play, and when to play it. Such timed games differ from untimed games in two essential ways. First, players can take each other by surprise, because actions are played with delays that canno ..."
Abstract

Cited by 58 (13 self)
 Add to MetaCart
We consider concurrent twoperson games played in real time, in which the players decide both which action to play, and when to play it. Such timed games differ from untimed games in two essential ways. First, players can take each other by surprise, because actions are played with delays that cannot be anticipated by the opponent. Second, a player should not be able to win the game by preventing time from diverging. We present a model of timed games that preserves the element of surprise and accounts for time divergence in a way that treats both players symmetrically and applies to all !regular winning conditions.
A Comparison of Control Problems for Timed and Hybrid Systems
, 2002
"... In the literature, we nd several formulations of the control problem for timed and hybrid systems. We argue that formulations where a controller can cause an action at any point in dense (rational or real) time are problematic, by presenting an example where the controller must act faster and faster ..."
Abstract

Cited by 54 (11 self)
 Add to MetaCart
(Show Context)
In the literature, we nd several formulations of the control problem for timed and hybrid systems. We argue that formulations where a controller can cause an action at any point in dense (rational or real) time are problematic, by presenting an example where the controller must act faster and faster, yet causes no Zeno eects (say, the control actions are at times 0; 1 2 ; 1; 1 3 4 ; 2; 2 7 8 ; 3; 3 15 16 ; : : :). Such a controller is, of course, not implementable in software. Such controllers are avoided by formulations where the controller can cause actions only at discrete (integer) points in time. While the resulting control problem is wellunderstood if the time unit, or \sampling rate" of the controller, is xed a priori, we dene a novel, stronger formulation: the discretetime control problem with unknown sampling rate asks if a sampling controller exists for some sampling rate. We prove that, surprisingly and unfortunately, this problem is undecidable even in the special case of timed automata. 1
Timed Control with Partial Observability
, 2003
"... We consider the problem of synthesizing controllers for timed systems modeled using timed automata. The point of departure from earlier work is that we consider controllers that have only a partial observation of the system that it controls. In discrete event systems (where continuous time is not ..."
Abstract

Cited by 52 (6 self)
 Add to MetaCart
We consider the problem of synthesizing controllers for timed systems modeled using timed automata. The point of departure from earlier work is that we consider controllers that have only a partial observation of the system that it controls. In discrete event systems (where continuous time is not modeled), it is well known how to handle partial observability, and decidability issues do not differ from the complete information setting. We show however that timed control under partial observability is undecidable even for internal specifications (while the analogous problem under complete observability is decidable) and we identify a decidable subclass.
JobShop Scheduling using Timed Automata
"... In this paper we show how the classical jobshop scheduling problem can be modeled as a special class of acyclic timed automata. Finding an optimal schedule corresponds, then, to nding a shortest (in terms of elapsed time) path in the timed automaton. This representation provides new techniques for ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
(Show Context)
In this paper we show how the classical jobshop scheduling problem can be modeled as a special class of acyclic timed automata. Finding an optimal schedule corresponds, then, to nding a shortest (in terms of elapsed time) path in the timed automaton. This representation provides new techniques for solving the optimization problem and, more importantly, it allows to model naturally more complex dynamic resource allocation problems which are not captured so easily in traditional models of operation research. We present several algorithms and heuristics for nding the shortest paths in timed automata and test their implementation in the tool Kronos on numerous benchmark examples.