Results 1  10
of
74
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1277 (4 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.
The hidden subgroup problem and eigenvalue estimation on a quantum computer
 Lecture Notes in Computer Science
, 1999
"... Abstract. A quantum computer can efficiently find the order of an element in a group, factors of composite integers, discrete logarithms, stabilisers in Abelian groups, and hidden or unknown subgroups of Abelian groups. It is already known how to phrase the first four problems as the estimation of e ..."
Abstract

Cited by 74 (2 self)
 Add to MetaCart
(Show Context)
Abstract. A quantum computer can efficiently find the order of an element in a group, factors of composite integers, discrete logarithms, stabilisers in Abelian groups, and hidden or unknown subgroups of Abelian groups. It is already known how to phrase the first four problems as the estimation of eigenvalues of certain unitary operators. Here we show how the solution to the more general Abelian hidden subgroup problem can also be described and analysed as such. We then point out how certain instances of these problems can be solved with only one control qubit, or flying qubits, instead of entire registers of control qubits. 1
Fast parallel circuits for the quantum Fourier transform
 PROCEEDINGS 41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS’00)
, 2000
"... We give new bounds on the circuit complexity of the quantum Fourier transform (QFT). We give an upper bound of O(log n + log log(1/ε)) on the circuit depth for computing an approximation of the QFT with respect to the modulus 2 n with error bounded by ε. Thus, even for exponentially small error, our ..."
Abstract

Cited by 72 (1 self)
 Add to MetaCart
(Show Context)
We give new bounds on the circuit complexity of the quantum Fourier transform (QFT). We give an upper bound of O(log n + log log(1/ε)) on the circuit depth for computing an approximation of the QFT with respect to the modulus 2 n with error bounded by ε. Thus, even for exponentially small error, our circuits have depth O(log n). The best previous depth bound was O(n), even for approximations with constant error. Moreover, our circuits have size O(n log(n/ε)). We also give an upper bound of O(n(log n) 2 log log n) on the circuit size of the exact QFT modulo 2 n, for which the best previous bound was O(n 2). As an application of the above depth bound, we show that Shor’s factoring algorithm may be based on quantum circuits with depth only O(log n) and polynomialsize, in combination with classical polynomialtime pre and postprocessing. In the language of computational complexity, this implies that factoring is in the complexity class ZPP BQNC, where BQNC is the class of problems computable with boundederror probability by quantum circuits with polylogarithmic depth and polynomial size. Finally, we prove an Ω(log n) lower bound on the depth complexity of approximations of the
QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS
 SIAM J. COMPUT
, 2006
"... Almost all of the most successful quantum algorithms discovered to date exploit the ability of the Fourier transform to recover subgroup structures of functions, especially periodicity. The fact that Fourier transforms can also be used to capture shift structure has received far less attention in th ..."
Abstract

Cited by 59 (3 self)
 Add to MetaCart
Almost all of the most successful quantum algorithms discovered to date exploit the ability of the Fourier transform to recover subgroup structures of functions, especially periodicity. The fact that Fourier transforms can also be used to capture shift structure has received far less attention in the context of quantum computation. In this paper, we present three examples of “unknown shift” problems that can be solved efficiently on a quantum computer using the quantum Fourier transform. For one of these problems, the shifted Legendre symbol problem, we give evidence that the problem is hard to solve classically, by showing a reduction from breaking algebraically homomorphic cryptosystems. We also define the hidden coset problem, which generalizes the hidden shift problem and the hidden subgroup problem. This framework provides a unified way of viewing the ability of the Fourier transform to capture subgroup and shift structure.
Efficient quantum algorithms for some instances of the nonAbelian hidden subgroup problem
 INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE
"... ..."
From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups
 Proceedings of the 46th IEEE Symp. Foundations of Computer Science, (IEEE, Los Alamitos, CA
, 2005
"... SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peerreviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for pap ..."
Abstract

Cited by 49 (2 self)
 Add to MetaCart
(Show Context)
SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peerreviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant. ©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only with the explicit permission of the copyright holder. www.santafe.edu SANTA FE INSTITUTE From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups
An Improved Quantum Fourier Transform Algorithm and Applications
 In Proceedings of the 41st Annual Symposium on Foundations of Computer Science
, 2000
"... We give an algorithm for approximating the quantum Fourier transform over an arbitrary Z p which requires only O(n log n) steps where n = log p to achieve an approximation to within an arbitrary inverse polynomial in n. This improves the method of Kitaev [11] which requires time quadratic in n. Thi ..."
Abstract

Cited by 45 (6 self)
 Add to MetaCart
We give an algorithm for approximating the quantum Fourier transform over an arbitrary Z p which requires only O(n log n) steps where n = log p to achieve an approximation to within an arbitrary inverse polynomial in n. This improves the method of Kitaev [11] which requires time quadratic in n. This algorithm also leads to a general and efficient Fourier sampling technique which improves upon the quantum Fourier sampling lemma of [8]. As an application of this technique we give a quantum algorithm which finds the period of an arbitrary periodic function, i.e. a function which may be manytoone within each period. We show that this algorithm is efficient (polylogarithmic in the period of the function) for a large class of periodic functions. Moreover, using standard quantum lowerbound techniques we show that this characterization is tight. That is, this is the maximal class of periodic functions with an efficient quantum periodfinding algorithm. 1 Introduction All known quantum alg...
Quantum algorithms for solvable groups
 In Proceedings of the 33rd ACM Symposium on Theory of Computing
, 2001
"... ABSTRACT In this paper we give a polynomialtime quantum algorithm for computing orders of solvable groups. Several other problems, such as testing membership in solvable groups, testing equality of subgroups in a given solvable group, and testing normality of a subgroup in a given solvable group, r ..."
Abstract

Cited by 45 (1 self)
 Add to MetaCart
(Show Context)
ABSTRACT In this paper we give a polynomialtime quantum algorithm for computing orders of solvable groups. Several other problems, such as testing membership in solvable groups, testing equality of subgroups in a given solvable group, and testing normality of a subgroup in a given solvable group, reduce to computing orders of solvable groups and therefore admit polynomialtime quantum algorithms as well. Our algorithm works in the setting of blackbox groups, wherein none of these problems have polynomialtime classical algorithms. As an important byproduct, our algorithm is able to produce a pure quantum state that is uniform over the elements in any chosen subgroup of a solvable group, which yields a natural way to apply existing quantum algorithms to factor groups of solvable groups. 1.
Information and Computation: Classical and Quantum Aspects
 REVIEWS OF MODERN PHYSICS
, 2001
"... Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportation, dense coding, and quantum cryptography are discussed as a few samples of the impact of quanta in the transmission of information. Quantum logic gates and quantum algorithms are also discussed as instances of the improvement in information processing by a quantum computer. We provide finally some examples of current experimental