Results 1  10
of
48
Selfish Routing and the Price of Anarchy
 MATHEMATICAL PROGRAMMING SOCIETY NEWSLETTER
, 2007
"... Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this in ..."
Abstract

Cited by 255 (11 self)
 Add to MetaCart
Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this inefficiency. We survey recent work that analyzes the price of anarchy of selfish routing. We also describe related results on bounding the worstpossible severity of a phenomenon called Braess’s Paradox, and on three techniques for reducing the price of anarchy of selfish routing. This survey concentrates on the contributions of the author’s PhD thesis, but also discusses several more recent results in the area.
Intrinsic Robustness of the Price of Anarchy
 STOC'09
, 2009
"... The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium ..."
Abstract

Cited by 101 (12 self)
 Add to MetaCart
(Show Context)
The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium. This drawback motivates the search for inefficiency bounds that apply more generally to weaker notions of equilibria, such as mixed Nash and correlated equilibria; or to sequences of outcomes generated by natural experimentation strategies, such as successive best responses or simultaneous regretminimization. We prove a general and fundamental connection between the price of anarchy and its seemingly stronger relatives in classes of games with a sum objective. First, we identify a “canonical sufficient condition ” for an upper bound of the POA for pure Nash equilibria, which we call a smoothness argument. Second, we show that every bound derived via a smoothness argument extends automatically, with no quantitative degradation in the bound, to mixed Nash equilibria, correlated equilibria, and the average objective function value of regretminimizing players (or “price of total anarchy”). Smoothness arguments also have automatic implications for the inefficiency of approximate and BayesianNash equilibria and, under mild additional assumptions, for bicriteria bounds and for polynomiallength bestresponse sequences. We also identify classes of games — most notably, congestion games with cost functions restricted to an arbitrary fixed set — that are tight, in the sense that smoothness arguments are guaranteed to produce an optimal worstcase upper bound on the POA, even for the smallest set of interest (pure Nash equilibria). Byproducts of our proof of this result include the first tight bounds on the POA in congestion games with nonpolynomial cost functions, and the first
Sink equilibria and convergence
 IN FOCS
, 2005
"... We introduce the concept of a sink equilibrium. A sink equilibrium is a strongly connected component with no outgoing arcs in the strategy profile graph associated with a game. The strategy profile graph has a vertex set induced by the set of pure strategy profiles; its arc set corresponds to transi ..."
Abstract

Cited by 83 (12 self)
 Add to MetaCart
We introduce the concept of a sink equilibrium. A sink equilibrium is a strongly connected component with no outgoing arcs in the strategy profile graph associated with a game. The strategy profile graph has a vertex set induced by the set of pure strategy profiles; its arc set corresponds to transitions between strategy profiles that occur with nonzero probability. (Here our focus will just be on the special case in which the strategy profile graph is actually a best response graph; that is, its arc set corresponds exactly to best response moves that result from myopic or greedy behaviour.) We argue that there is a natural convergence process to sink equilibria in games where agents use pure strategies. This leads to an alternative measure of the social cost of a lack of coordination, the price of sinking, which
On spectrum sharing games,
 In Proc. 22nd Symp. Principles of Distributed Computing (PODC)
, 2004
"... Abstract Efficient spectrumsharing mechanisms are crucial to alleviate the bandwidth limitation in wireless networks. In this paper, we consider the following question: can free spectrum be shared efficiently? We study this problem in the context of 802.11 or WiFi networks. Each access point (AP) ..."
Abstract

Cited by 79 (3 self)
 Add to MetaCart
(Show Context)
Abstract Efficient spectrumsharing mechanisms are crucial to alleviate the bandwidth limitation in wireless networks. In this paper, we consider the following question: can free spectrum be shared efficiently? We study this problem in the context of 802.11 or WiFi networks. Each access point (AP) in a WiFi network must be assigned a channel for it to service users. There are only finitely many possible channels that can be assigned. Moreover, neighboring access points must use different channels so as to avoid interference. Currently these channels are assigned by administrators who carefully consider channel conflicts and network loads. Channel conflicts among APs operated by different entities are currently resolved in an ad hoc manner (i.e., not in a coordinated way) or not resolved at all. We view the channel assignment problem as a game, where the players are the service providers and APs are acquired sequentially. We consider the price of anarchy of this game, which is the ratio between the total coverage of the APs in the worst Nash equilibrium of the game and what the total coverage of the APs would be if the channel assignment were done optimally by a central authority. We provide bounds on the price of anarchy depending on assumptions on the underlying network and the type of bargaining allowed between service providers. The key tool in the analysis is the identification of the Nash equilibria with the solutions * A preliminary version of this paper appeared in ACM Symposium on Principles of to a maximal coloring problem in an appropriate graph. We relate the price of anarchy of these games to the approximation factor of local optimization algorithms for the maximum kcolorable subgraph problem. We also study the speed of convergence in these games.
Convergence to Approximate Nash Equilibria in Congestion Games
 In SODA ’07
, 2007
"... ..."
(Show Context)
Regret minimization and the price of total anarchy
, 2008
"... We propose weakening the assumption made when studying the price of anarchy: Rather than assume that selfinterested players will play according to a Nash equilibrium (which may even be computationally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret ..."
Abstract

Cited by 59 (10 self)
 Add to MetaCart
(Show Context)
We propose weakening the assumption made when studying the price of anarchy: Rather than assume that selfinterested players will play according to a Nash equilibrium (which may even be computationally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret minimization can be done via simple, efficient algorithms even in many settings where the number of action choices for each player is exponential in the natural parameters of the problem. We prove that despite our weakened assumptions, in several broad classes of games, this “price of total anarchy” matches the Nash price of anarchy, even though play may never converge to Nash equilibrium. In contrast to the price of anarchy and the recently introduced price of sinking [15], which require all players to behave in a prescribed manner, we show that the price of total anarchy is in many cases resilient to the presence of Byzantine players, about whom we make no assumptions. Finally, because the price of total anarchy is an upper bound on the price of anarchy even in mixed strategies, for some games our results yield as corollaries previously unknown bounds on the price of anarchy in mixed strategies.
Distributed selfish load balancing
, 2006
"... Suppose that a set of m tasks are to be shared as equally as possible amongst a set of n resources. A gametheoretic mechanism to find a suitable allocation is to associate each task with a “selfish agent”, and require each agent to select a resource, with the cost of a resource being the number of ..."
Abstract

Cited by 40 (2 self)
 Add to MetaCart
Suppose that a set of m tasks are to be shared as equally as possible amongst a set of n resources. A gametheoretic mechanism to find a suitable allocation is to associate each task with a “selfish agent”, and require each agent to select a resource, with the cost of a resource being the number of agents to select it. Agents would then be expected to migrate from overloaded to underloaded resources, until the allocation becomes balanced. Recent work has studied the question of how this can take place within a distributed setting in which agents migrate selfishly without any centralized control. In this paper we discuss a natural protocol for the agents which combines the following desirable features: It can be implemented in a strongly distributed setting, uses no central control, and has good convergence properties. For m ≫ n, the system becomes approximately balanced (an ǫNash equilibrium) in expected time O(log log m). We show using a martingale technique that the process converges to a perfectly balanced allocation in expected time O(log log m + n 4). We also give a lower bound of Ω(max{loglog m, n}) for the convergence time.
NonCooperative Multicast and Facility Location Games
"... We consider a multicast game with selfish noncooperative players. There is a special source node and each player is interested in connecting to the source by making a routing decision that minimizes its payment. The mutual influence of the players is determined by a cost sharing mechanism, which in ..."
Abstract

Cited by 40 (2 self)
 Add to MetaCart
We consider a multicast game with selfish noncooperative players. There is a special source node and each player is interested in connecting to the source by making a routing decision that minimizes its payment. The mutual influence of the players is determined by a cost sharing mechanism, which in our case evenly splits the cost of an edge among the players using it. We consider two different models: an integral model, where each player connects to the source by choosing a single path, and a fractional model, where a player is allowed to split the flow it receives from the source between several paths. In both models we explore the overhead incurred in network cost due to the selfish behavior of the users, as well as the computational complexity of finding a Nash equilibrium. The existence of a Nash equilibrium for the integral model was previously established by the means of a potential function. We prove that finding a Nash equilibrium that minimizes the potential function is NPhard. We focus on the price of anarchy of a Nash equilibrium resulting from the bestresponse dynamics of a game course, where the players join the game sequentially. For a game with n players, we establish an upper bound of O ( √ n log 2 n) on the price of anarchy, and a lower bound of Ω(log n/log log n). For the fractional model, we prove the existence of a Nash equilibrium via a potential function and give a polynomial time algorithm for computing an equilibrium that minimizes the potential function. Finally, we consider a weighted extension of the multicast game, and prove that in the fractional model, the game always has a Nash equilibrium.
Convergence and Approximation in Potential Games
, 2006
"... We study the speed of convergence to approximately optimal states in two classes of potential games. We provide bounds in terms of the number of rounds, where a round consists of a sequence of movements, with each player appearing at least once in each round. We model the sequential interaction betw ..."
Abstract

Cited by 39 (3 self)
 Add to MetaCart
(Show Context)
We study the speed of convergence to approximately optimal states in two classes of potential games. We provide bounds in terms of the number of rounds, where a round consists of a sequence of movements, with each player appearing at least once in each round. We model the sequential interaction between players by a bestresponse walk in the state graph, where every transition in the walk corresponds to a best response of a player. Our goal is to bound the social value of the states at the end of such walks. In this paper, we focus on two classes of potential games: selfish routing games, and cut games (or party affiliation games [7]).
(Almost) optimal coordination mechanisms for unrelated maching scheduling
 IN 18TH ACMSIAM SYMP. ON DISCRETE ALGORITHMS (SODA
, 2008
"... We investigate the influence of different algorithmic choices on the approximation ratio in selfish scheduling. Our goal is to design local policies that minimize the inefficiency of resulting equilibria. In particular, we design optimal coordination mechanisms for unrelated machine scheduling, and ..."
Abstract

Cited by 33 (6 self)
 Add to MetaCart
(Show Context)
We investigate the influence of different algorithmic choices on the approximation ratio in selfish scheduling. Our goal is to design local policies that minimize the inefficiency of resulting equilibria. In particular, we design optimal coordination mechanisms for unrelated machine scheduling, and improve the known approximation ratio from Θ(m) to Θ(log m), where m is the number of machines. A local policy for each machine orders the set of jobs assigned to it only based on parameters of those jobs. A strongly local policy only uses the processing time of jobs on the the same machine. We prove that the approximation ratio of any set of strongly local ordering policies in equilibria is at least Ω(m). In particular, it implies that the approximation ratio of a greedy shortestfirst algorithm for machine scheduling is at least Ω(m). This closes the gap between the known lower and upper bounds for this problem, and answers an open question raised by Ibarra and Kim [16], and Davis and Jaffe [10]. We then design a local ordering policy with the approximation ratio of Θ(log m) in equilibria, and prove that this policy is optimal among all local ordering policies. This policy orders the jobs in the nondecreasing order of their inefficiency, i.e, the ratio between the processing time on that machine over the minimum processing time. Finally, we show that best responses of players for the inefficiencybased policy may not converge to a pure Nash equilibrium, and present a Θ(log² m) policy for which we can prove fast convergence of best responses to pure Nash equilibria.