Results 1 - 10
of
609
The Fast Downward planning system
- Journal of Artifical Intelligence Research
, 2006
"... Fast Downward is a classical planning system based on heuristic search. It can deal with general deterministic planning problems encoded in the propositional fragment of PDDL2.2, including advanced features like ADL conditions and effects and derived predicates (axioms). Like other well-known planne ..."
Abstract
-
Cited by 347 (29 self)
- Add to MetaCart
(Show Context)
Fast Downward is a classical planning system based on heuristic search. It can deal with general deterministic planning problems encoded in the propositional fragment of PDDL2.2, including advanced features like ADL conditions and effects and derived predicates (axioms). Like other well-known planners such as HSP and FF, Fast Downward is a progression planner, searching the space of world states of a planning task in the forward direction. However, unlike other PDDL planning systems, Fast Downward does not use the propositional PDDL representation of a planning task directly. Instead, the input is first translated into an alternative representation called multivalued planning tasks, which makes many of the implicit constraints of a propositional planning task explicit. Exploiting this alternative representation, Fast Downward uses hierarchical decompositions of planning tasks for computing its heuristic function, called the causal graph heuristic, which is very different from traditional HSP-like heuristics based on ignoring negative interactions of operators. In this article, we give a full account of Fast Downward’s approach to solving multi-valued planning tasks. We extend our earlier discussion of the causal graph heuristic to tasks involving
Planning through Stochastic Local Search and Action Graphs in LPG
- Journal of Artificial Intelligence Research (JAIR
, 1996
"... We present some techniques for planning in domains specified with the recent standard language pddl2.1, supporting “durative actions ” and numerical quantities. These tech-niques are implemented in lpg, a domain-independent planner that took part in the 3rd International Planning Competition (IPC). ..."
Abstract
-
Cited by 169 (22 self)
- Add to MetaCart
(Show Context)
We present some techniques for planning in domains specified with the recent standard language pddl2.1, supporting “durative actions ” and numerical quantities. These tech-niques are implemented in lpg, a domain-independent planner that took part in the 3rd International Planning Competition (IPC). lpg is an incremental, any time system pro-ducing multi-criteria quality plans. The core of the system is based on a stochastic local search method and on a graph-based representation called “Temporal Action Graphs ” (TA-graphs). This paper focuses on temporal planning, introducing TA-graphs and proposing some techniques to guide the search in lpg using this representation. The experimental results of the 3rd IPC, as well as further results presented in this paper, show that our techniques can be very effective. Often lpg outperforms all other fully-automated plan-ners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that can be produced. 1.
The 3rd international planning competition: Results and analysis
- Journal of Artificial Intelligence Research
, 2003
"... This paper reports the outcome of the third in the series of biennial international planning competitions, held in association with the International Conference on AI Planning and Scheduling (AIPS) in 2002. In addition to describing the domains, the planners and the objectives of the competition, th ..."
Abstract
-
Cited by 146 (20 self)
- Add to MetaCart
(Show Context)
This paper reports the outcome of the third in the series of biennial international planning competitions, held in association with the International Conference on AI Planning and Scheduling (AIPS) in 2002. In addition to describing the domains, the planners and the objectives of the competition, the paper includes analysis of the results. The results are analysed from several perspectives, in order to address the questions of comparative performance between planners, comparative difficulty of domains, the degree of agreement between planners about the relative difficulty of individual problem instances and the question of how well planners scale relative to one another over increasingly difficult problems. The paper addresses these questions through statistical analysis of the raw results of the competition, in order to determine which results can be considered to be adequately supported by the data. The paper concludes with a discussion of some challenges for the future of the competition series. 1.
The LAMA planner: guiding cost-based anytime planning with landmarks.
- Journal Artificial Intelligence Research (JAIR)
, 2010
"... Abstract LAMA is a classical planning system based on heuristic forward search. Its core feature is the use of a pseudo-heuristic derived from landmarks, propositional formulas that must be true in every solution of a planning task. LAMA builds on the Fast Downward planning system, using finite-dom ..."
Abstract
-
Cited by 141 (5 self)
- Add to MetaCart
(Show Context)
Abstract LAMA is a classical planning system based on heuristic forward search. Its core feature is the use of a pseudo-heuristic derived from landmarks, propositional formulas that must be true in every solution of a planning task. LAMA builds on the Fast Downward planning system, using finite-domain rather than binary state variables and multi-heuristic search. The latter is employed to combine the landmark heuristic with a variant of the well-known FF heuristic. Both heuristics are cost-sensitive, focusing on high-quality solutions in the case where actions have non-uniform cost. A weighted A * search is used with iteratively decreasing weights, so that the planner continues to search for plans of better quality until the search is terminated. LAMA showed best performance among all planners in the sequential satisficing track of the International Planning Competition 2008. In this paper we present the system in detail and investigate which features of LAMA are crucial for its performance. We present individual results for some of the domains used at the competition, demonstrating good and bad cases for the techniques implemented in LAMA. Overall, we find that using landmarks improves performance, whereas the incorporation of action costs into the heuristic estimators proves not to be beneficial. We show that in some domains a search that ignores cost solves far more problems, raising the question of how to deal with action costs more effectively in the future. The iterated weighted A * search greatly improves results, and shows synergy effects with the use of landmarks.
Constraint-based attribute and interval planning
- Journal of Constraints, Special Issue on Constraints and Planning
, 2003
"... Abstract. In this paper we describe Constraint-based Attribute and Interval Planning (CAIP), a paradigm for representing and reasoning about plans. The paradigm enables the description of planning domains with time, resources, concurrent activities, mutual exclusions among sets of activities, disjun ..."
Abstract
-
Cited by 78 (7 self)
- Add to MetaCart
Abstract. In this paper we describe Constraint-based Attribute and Interval Planning (CAIP), a paradigm for representing and reasoning about plans. The paradigm enables the description of planning domains with time, resources, concurrent activities, mutual exclusions among sets of activities, disjunctive preconditions and conditional effects. We provide a theoretical foundation for the paradigm, based on temporal intervals and attributes. We then show how the plans are naturally expressed by networks of constraints, and show that the process of planning maps directly to dynamic constraint reasoning. In addition, we define compatibilities, a compact mechanism for describing planning domains. We describe how this framework can incorporate the use of constraint reasoning technology to improve planning. Finally, we describe EUROPA, an implementation of the CAIP framework. 1. What Should a Planner Do? In recent years, planning has been applied to complex domains, including the sequencing of commands for spacecraft both on the ground and on-board (Jónsson et al., 2000). The domain of spacecraft operations
The deterministic part of IPC-4: an overview
, 2005
"... We provide an overview of the organization and results of the deterministic part of the 4th International Planning Competition, i.e., of the part concerned with evaluating systems doing deterministic planning. IPC-4 attracted even more competing systems than its already large predecessors, and the c ..."
Abstract
-
Cited by 74 (10 self)
- Add to MetaCart
We provide an overview of the organization and results of the deterministic part of the 4th International Planning Competition, i.e., of the part concerned with evaluating systems doing deterministic planning. IPC-4 attracted even more competing systems than its already large predecessors, and the competition event was revised in several important respects. After giving an introduction to the IPC, we briefly explain the main differences between the deterministic part of IPC-4 and its predecessors. We then introduce formally the language used, called PDDL2.2 that extends PDDL2.1 by derived predicates and timed initial literals. We list the competing systems and overview the results of the competition. The entire set of data is far too large to be presented in full. We provide a detailed summary; the complete data is available in an online appendix. We explain how we awarded the competition prizes.
Sapa: A multi-objective metric temporal planner
- J. Artif. Intell. Res
"... Sapa is a domain-independent heuristic forward chaining planner that can handle durative actions, metric resource constraints, and deadline goals. It is designed to be capable of handling the multi-objective nature of metric temporal planning. Our technical contributions include (i) planning-graph b ..."
Abstract
-
Cited by 67 (13 self)
- Add to MetaCart
(Show Context)
Sapa is a domain-independent heuristic forward chaining planner that can handle durative actions, metric resource constraints, and deadline goals. It is designed to be capable of handling the multi-objective nature of metric temporal planning. Our technical contributions include (i) planning-graph based methods for deriving heuristics that are sensitive to both cost and makespan (ii) techniques for adjusting the heuristic estimates to take action interactions and metric resource limitations into account and (iii) a linear time greedy post-processing technique to improve execution flexibility of the solution plans. An implementation of Sapa using many of the techniques presented in this paper was one of the best domain independent planners for domains with metric and temporal constraints in the third International Planning Competition, held at AIPS-02. We describe the technical details of extracting the heuristics and present an empirical evaluation of the current implementation of Sapa. 1.
Concise finite-domain representations for PDDL planning tasks
, 2009
"... We introduce an efficient method for translating planning tasks specified in the standard PDDL formalism into a concise grounded representation that uses finite-domain state variables instead of the straight-forward propositional encoding. Translation is performed in four stages. Firstly, we transfo ..."
Abstract
-
Cited by 63 (13 self)
- Add to MetaCart
(Show Context)
We introduce an efficient method for translating planning tasks specified in the standard PDDL formalism into a concise grounded representation that uses finite-domain state variables instead of the straight-forward propositional encoding. Translation is performed in four stages. Firstly, we transform the input task into an equivalent normal form expressed in a restricted fragment of PDDL. Secondly, we synthesize invariants of the planning task that identify groups of mutually exclusive propositions which can be represented by a single finite-domain variable. Thirdly, we perform an efficient relaxed reachability analysis using logic programming techniques to obtain a grounded representation of the input. Finally, we combine the results of the third and fourth stage to generate the final grounded finite-domain representation. The presented approach has originally been implemented as part of the Fast Downward planning system for the 4th International Planning Competition (IPC4). Since then, it has been used in a number of other contexts with considerable success, and the use of concise finite-domain representations has become a common feature of state-of-the-art planners.
Factored planning
- In IJCAI’03
, 2003
"... We present a general-purpose method for dynamically factoring a planning domain, whose structure is then exploited by our generic planning method to find sound and complete plans. The planning algorithm’s time complexity scales linearly with the size of the domain, and at worst exponentially with th ..."
Abstract
-
Cited by 55 (7 self)
- Add to MetaCart
We present a general-purpose method for dynamically factoring a planning domain, whose structure is then exploited by our generic planning method to find sound and complete plans. The planning algorithm’s time complexity scales linearly with the size of the domain, and at worst exponentially with the size of the largest subdomain and interaction between subdomains. The factorization procedure divides a planning domain into subdomains that are organized in a tree structure such that interaction between neighboring subdomains in the tree is minimized. The combined planning algorithm is sound and complete, and we demonstrate it on a representative planning domain. The algorithm appears to scale to very large problems regardless of the black box planner used. 1