Results 1 - 10
of
567
Maximizing the Spread of Influence Through a Social Network
- In KDD
, 2003
"... Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of ..."
Abstract
-
Cited by 990 (7 self)
- Add to MetaCart
(Show Context)
Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of “word of mouth ” in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target? We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63 % of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks. We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform nodeselection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.
Evaluating collaborative filtering recommender systems
- ACM TRANSACTIONS ON INFORMATION SYSTEMS
, 2004
"... ..."
Measuring user influence in Twitter: The million follower fallacy
- in ICWSM ’10: Proceedings of international AAAI Conference on Weblogs and Social
, 2010
"... Directed links in social media could represent anything from intimate friendships to common interests, or even a passion for breaking news or celebrity gossip. Such directed links determine the flow of information and hence indicate a user’s influence on others—a concept that is crucial in sociology ..."
Abstract
-
Cited by 401 (24 self)
- Add to MetaCart
(Show Context)
Directed links in social media could represent anything from intimate friendships to common interests, or even a passion for breaking news or celebrity gossip. Such directed links determine the flow of information and hence indicate a user’s influence on others—a concept that is crucial in sociology and viral marketing. In this paper, using a large amount of data collected from Twitter, we present an in-depth comparison of three measures of influence: indegree, retweets, and mentions. Based on these measures, we investigate the dynamics of user influence across topics and time. We make several interesting observations. First, popular users who have high indegree are not necessarily influential in terms of spawning retweets or mentions. Second, most influential users can hold significant influence over a variety of topics. Third, influence is not gained spontaneously or accidentally, but through concerted effort such as limiting tweets to a single topic. We believe that these findings provide new insights for viral marketing and suggest that topological measures such as indegree alone reveals very little about the influence of a user.
Mining Knowledge-Sharing Sites for Viral Marketing
, 2002
"... Viral marketing takes advantage of networks of influence among customers to inexpensively achieve large changes in behavior. Our research seeks to put it on a firmer footing by mining these networks from data, building probabilistic models of them, and using these models to choose the best viral mar ..."
Abstract
-
Cited by 368 (8 self)
- Add to MetaCart
(Show Context)
Viral marketing takes advantage of networks of influence among customers to inexpensively achieve large changes in behavior. Our research seeks to put it on a firmer footing by mining these networks from data, building probabilistic models of them, and using these models to choose the best viral marketing plan. Knowledge-sharing sites, where customers review products and advise each other, are a fertile source for this type of data mining. In this paper we extend our previous techniques, achieving a large reduction in computational cost, and apply them to data from a knowledge-sharing site. We optimize the amount of marketing funds spent on each customer, rather than just making a binary decision on whether to market to him. We take into account the fact that knowledge of the network is partial, and that gathering that knowledge can itself have a cost. Our results show the robustness and utility of our approach.
Trust management for the semantic web
- In ISWC
, 2003
"... Abstract. Though research on the Semantic Web has progressed at a steady pace, its promise has yet to be realized. One major difficulty is that, by its very nature, the Semantic Web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give ea ..."
Abstract
-
Cited by 271 (3 self)
- Add to MetaCart
(Show Context)
Abstract. Though research on the Semantic Web has progressed at a steady pace, its promise has yet to be realized. One major difficulty is that, by its very nature, the Semantic Web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each source. We cannot expect each user to know the trustworthiness of each source, nor would we want to assign top-down or global credibility values due to the subjective nature of trust. We tackle this problem by employing a web of trust, in which each user provides personal trust values for a small number of other users. We compose these trusts to compute the trust a user should place in any other user in the network. A user is not assigned a single trust rank. Instead, different users may have different trust values for the same user. We define properties for combination functions which merge such trusts, and define a class of functions for which merging may be done locally while maintaining these properties. We give examples of specific functions and apply them to data from Epinions and our BibServ bibliography server. Experiments confirm that the methods are robust to noise, and do not put unreasonable expectations on users. We hope that these methods will help move the Semantic Web closer to fulfilling its promise. 1.
Classification in Networked Data: A toolkit and a univariate case study
, 2006
"... This paper is about classifying entities that are interlinked with entities for which the class is known. After surveying prior work, we present NetKit, a modular toolkit for classification in networked data, and a case-study of its application to networked data used in prior machine learning resear ..."
Abstract
-
Cited by 200 (10 self)
- Add to MetaCart
This paper is about classifying entities that are interlinked with entities for which the class is known. After surveying prior work, we present NetKit, a modular toolkit for classification in networked data, and a case-study of its application to networked data used in prior machine learning research. NetKit is based on a node-centric framework in which classifiers comprise a local classifier, a relational classifier, and a collective inference procedure. Various existing node-centric relational learning algorithms can be instantiated with appropriate choices for these components, and new combinations of components realize new algorithms. The case study focuses on univariate network classification, for which the only information used is the structure of class linkage in the network (i.e., only links and some class labels). To our knowledge, no work previously has evaluated systematically the power of class-linkage alone for classification in machine learning benchmark data sets. The results demonstrate that very simple network-classification models perform quite well—well enough that they should be used regularly as baseline classifiers for studies of learning with networked data. The simplest method (which performs remarkably well) highlights the close correspondence between several existing methods introduced for different purposes—i.e., Gaussian-field classifiers, Hopfield networks, and relational-neighbor classifiers. The case study also shows that there are two sets of techniques that are preferable in different situations, namely when few versus many labels are known initially. We also demonstrate that link selection plays an important role similar to traditional feature selection.
Efficient influence maximization in social networks
- In Proc. of ACM KDD
, 2009
"... Influence maximization is the problem of finding a small subset of nodes (seed nodes) in a social network that could maximize the spread of influence. In this paper, we study the efficient influence maximization from two complementary directions. One is to improve the original greedy algorithm of [5 ..."
Abstract
-
Cited by 197 (18 self)
- Add to MetaCart
(Show Context)
Influence maximization is the problem of finding a small subset of nodes (seed nodes) in a social network that could maximize the spread of influence. In this paper, we study the efficient influence maximization from two complementary directions. One is to improve the original greedy algorithm of [5] and its improvement [7] to further reduce its running time, and the second is to propose new degree discount heuristics that improves influence spread. We evaluate our algorithms by experiments on two large academic collaboration graphs obtained from the online archival database arXiv.org. Our experimental results show that (a) our improved greedy algorithm achieves better running time comparing with the improvement of [7] with matching influence spread, (b) our degree discount heuristics achieve much better influence spread than classic degree and centrality-based heuristics, and when tuned for a specific influence cascade model, it achieves almost matching influence thread with the greedy algorithm, and more importantly (c) the degree discount heuristics run only in milliseconds while even the improved greedy algorithms run in hours in our experiment graphs with a few tens of thousands of nodes. Based on our results, we believe that fine-tuned heuristics may provide truly scalable solutions to the influence maximization problem with satisfying influence spread and blazingly fast running time. Therefore, contrary to what implied by the conclusion of [5] that traditional heuristics are outperformed by the greedy approximation algorithm, our results shed new lights on the research of heuristic algorithms.
Scalable Influence Maximization for Prevalent Viral Marketing in Large-Scale Social Networks
"... Influence maximization, defined by Kempe, Kleinberg, and Tardos (2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling preval ..."
Abstract
-
Cited by 183 (14 self)
- Add to MetaCart
(Show Context)
Influence maximization, defined by Kempe, Kleinberg, and Tardos (2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in largescale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (2003) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this paper, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread — it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100%–260 % increase in influence spread.
Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint
- In SRDS
, 2003
"... Abstract How will a virus propagate in a real network?Does an epidemic threshold exist for a finite powerlaw graph, or any finite graph? How long does ittake to disinfect a network given particular values of infection rate and virus death rate? We answer the first question by providing equa-tions th ..."
Abstract
-
Cited by 167 (19 self)
- Add to MetaCart
(Show Context)
Abstract How will a virus propagate in a real network?Does an epidemic threshold exist for a finite powerlaw graph, or any finite graph? How long does ittake to disinfect a network given particular values of infection rate and virus death rate? We answer the first question by providing equa-tions that accurately model virus propagation in any network including real and synthesized networkgraphs. We propose a general epidemic threshold condition that applies to arbitrary graphs: weprove that, under reasonable approximations, the epidemic threshold for a network is closely relatedto the largest eigenvalue of its adjacency matrix. Finally, for the last question, we show that infec-tions tend to zero exponentially below the epidemic threshold. We show that our epidemic threshold modelsubsumes many known thresholds for special-case graphs (e.g., Erd"os-R'enyi, BA power-law, homoge-neous); we show that the threshold tends to zero for infinite power-law graphs. Finally, we illustrate thepredictive power of our model with extensive experiments on real and synthesized graphs. We show thatour threshold condition holds for arbitrary graphs.
Influential Nodes in a Diffusion Model for Social Networks
- IN ICALP
, 2005
"... We study the problem of maximizing the expected spread of an innovation or behavior within a social network, in the presence of "word-of-mouth" referral. Our work builds on the observation that individuals' decisions to purchase a product or adopt an innovation are strongly influe ..."
Abstract
-
Cited by 152 (3 self)
- Add to MetaCart
We study the problem of maximizing the expected spread of an innovation or behavior within a social network, in the presence of "word-of-mouth" referral. Our work builds on the observation that individuals' decisions to purchase a product or adopt an innovation are strongly influenced by recommendations from their friends and acquaintances. Understanding