Results 1 - 10
of
554
Geography-informed Energy Conservation for Ad Hoc Routing
- ACM MOBICOM
, 2001
"... We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity. GA ..."
Abstract
-
Cited by 1045 (21 self)
- Add to MetaCart
(Show Context)
We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity. GAF moderates this policy using application- and system-level information; nodes that source or sink data remain on and intermediate nodes monitor and balance energy use. GAF is independent of the underlying ad hoc routing protocol; we simulate GAF over unmodified AODV and DSR. Analysis and simulation studies of GAF show that it can consume 40% to 60% less energy than an unmodified ad hoc routing protocol. Moreover, simulations of GAF suggest that network lifetime increases proportionally to node density; in one example, a four-fold increase in node density leads to network lifetime increase for 3 to 6 times (depending on the mobility pattern). More generally, GAF is an example of adaptive fidelity, a technique proposed for extending the lifetime of self-configuring systems by exploiting redundancy to conserve energy while maintaining application fidelity.
Capacity of Ad Hoc Wireless Networks
"... Early simulation experience with wireless ad hoc networks suggests that their capacity can be surprisingly low, due to the requirement that nodes forward each others’ packets. The achievable capacity depends on network size, traffic patterns, and detailed local radio interactions. This paper examine ..."
Abstract
-
Cited by 636 (14 self)
- Add to MetaCart
(Show Context)
Early simulation experience with wireless ad hoc networks suggests that their capacity can be surprisingly low, due to the requirement that nodes forward each others’ packets. The achievable capacity depends on network size, traffic patterns, and detailed local radio interactions. This paper examines these factors alone and in combination, using simulation and analysis from first principles. Our results include both specific constants and general scaling relationships helpful in understanding the limitations of wireless ad hoc networks. We examine interactions of the 802.11 MAC and ad hoc forwarding and the effect on capacity for several simple configurations and traffic patterns. While 802.11 discovers reasonably good schedules, we nonetheless observe capacities markedly less than optimal for very simple chain and lattice networks with very regular traffic patterns. We validate some simulation results with experiments. We also show that the traffic pattern determines whether an ad hoc network’s per node capacity will scale to large networks. In particular, we show that for total capacity to scale up with network size the average distance between source and destination nodes must remain small as the network grows. Non-local traffic patterns in which this average distance grows with the network size result in a rapid decrease of per node capacity. Thus the question “Are large ad hoc networks feasible?” reduces to a question about the likely locality of communication in such networks.
The Cougar Approach to In-Network Query Processing in Sensor Networks
- SIGMOD Record
, 2002
"... The widespread distribution and availability of smallscale sensors, actuators, and embedded processors is transforming the physical world into a computing platform. One such example is a sensor network consisting of a large number of sensor nodes that combine physical sensing capabilities such as te ..."
Abstract
-
Cited by 498 (1 self)
- Add to MetaCart
(Show Context)
The widespread distribution and availability of smallscale sensors, actuators, and embedded processors is transforming the physical world into a computing platform. One such example is a sensor network consisting of a large number of sensor nodes that combine physical sensing capabilities such as temperature, light, or seismic sensors with networking and computation capabilities. Applications range from environmental control, warehouse inventory, and health care to military environments. Existing sensor networks assume that the sensors are preprogrammed and send data to a central frontend where the data is aggregated and stored for offline querying and analysis. This approach has two major drawbacks. First, the user cannot change the behavior of the system on the fly. Second, conservation of battery power is a major design factor, but a central system cannot make use of in-network programming, which trades costly communication for cheap local computation.
Query Processing for Sensor Networks
, 2003
"... Hardware for sensor nodes that combine physical sensors, actuators, embedded processors, and communication components has advanced significantly over the last decade, and made the large-scale deployment of such sensors a reality. Applications range from monitoring applications such as inventory main ..."
Abstract
-
Cited by 447 (4 self)
- Add to MetaCart
Hardware for sensor nodes that combine physical sensors, actuators, embedded processors, and communication components has advanced significantly over the last decade, and made the large-scale deployment of such sensors a reality. Applications range from monitoring applications such as inventory maintenance over health care to military applications.
Gossip-based ad hoc routing
, 2002
"... Many ad hoc routing protocols are based on some variant of flooding. Despite various optimizations, many routing messages are propagated unnecessarily. We propose a gossiping-based approach, where each node forwards a message with some probability, to reduce the overhead of the routing protocols. G ..."
Abstract
-
Cited by 379 (4 self)
- Add to MetaCart
Many ad hoc routing protocols are based on some variant of flooding. Despite various optimizations, many routing messages are propagated unnecessarily. We propose a gossiping-based approach, where each node forwards a message with some probability, to reduce the overhead of the routing protocols. Gossiping exhibits bimodal behavior in sufficiently large networks: in some executions, the gossip dies out quickly and hardly any node gets the message; in the remaining executions, a substantial fraction of the nodes gets the message. The fraction of execution s in which most nodes get the message depends on the gossiping probability a nd the topology of the network. In the networks we have considered, using gossiping probability between 0.6 and 0.8 suffices to ensure that almost every node gets the message in almost every execution. For large networks, this simple gossiping protocol uses up to 35 % fewer messages than flooding, with improved performance. Gossiping can also be combined with various optimizations of flooding to yield further benefits. Simulations show that adding gossiping to AODV results in significant performance improvement, even in networks as small as 150 nodes. We expect that the improvement should be even more significant in larger networks.
The Node Distribution of the Random Waypoint Mobility Model for Wireless Ad Hoc Networks
, 2003
"... The random waypoint model is a commonly used mobility model in the simulation of ad hoc networks. It is known that the spatial distribution of network nodes moving according to this model is, in general, nonuniform. However, a closed-form expression of this distribution and an in-depth investigation ..."
Abstract
-
Cited by 377 (10 self)
- Add to MetaCart
(Show Context)
The random waypoint model is a commonly used mobility model in the simulation of ad hoc networks. It is known that the spatial distribution of network nodes moving according to this model is, in general, nonuniform. However, a closed-form expression of this distribution and an in-depth investigation is still missing. This fact impairs the accuracy of the current simulation methodology of ad hoc networks and makes it impossible to relate simulation-based performance results to corresponding analytical results. To overcome these problems, we present a detailed analytical study of the spatial node distribution generated by random waypoint mobility. More specifically, we consider a generalization of the model in which the pause time of the mobile nodes is chosen arbitrarily in each waypoint and a fraction of nodes may remain static for the entire simulation time. We show that the structure of the resulting distribution is the weighted sum of three independent components: the static, pause, and mobility component. This division enables us to understand how the models parameters influence the distribution. We derive an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area. The good quality of this approximation is validated through simulations using various settings of the mobility parameters. In summary, this article gives a fundamental understanding of the behavior of the random waypoint model.
On-demand Multipath Distance Vector Routing in Ad Hoc Networks
- in Proceedings of IEEE International Conference on Network Protocols (ICNP
, 2001
"... We develop an on-demand, multipath distance vector protocol for mobile ad hoc networks. Specifically, we propose multipath extensions to a well-studied single path routing protocol known as Ad hoc On-demand Distance Vector (AODV). The resulting protocol is referred to as Ad hoc Ondemand Multipath Di ..."
Abstract
-
Cited by 360 (3 self)
- Add to MetaCart
(Show Context)
We develop an on-demand, multipath distance vector protocol for mobile ad hoc networks. Specifically, we propose multipath extensions to a well-studied single path routing protocol known as Ad hoc On-demand Distance Vector (AODV). The resulting protocol is referred to as Ad hoc Ondemand Multipath Distance Vector (AOMDV). The protocol computes multiple loop-free and link-disjoint paths. Loopfreedom is guaranteed by using a notion of "advertised hopcount." Link-disjointness of multiple paths is achieved by using a particular property of flooding. Performance comparison of AOMDV with AODV using ns-2 simulations shows that AOMDV is able to achieve a remarkable improvement in the end-to-end delay --- often more than a factor of two, and is also able to reduce routing overheads by about 20%. 1
Architecture and Evaluation of an Unplanned 802.11b Mesh Network
, 2005
"... This paper evaluates the ability of a wireless mesh architecture to provide high performance Internet access while demanding little deployment planning or operational management. The architecture considered in this paper has unplanned node placement (rather than planned topology), omni-directional a ..."
Abstract
-
Cited by 332 (1 self)
- Add to MetaCart
(Show Context)
This paper evaluates the ability of a wireless mesh architecture to provide high performance Internet access while demanding little deployment planning or operational management. The architecture considered in this paper has unplanned node placement (rather than planned topology), omni-directional antennas (rather than directional links), and multi-hop routing (rather than single-hop base stations). These design decisions contribute to ease of deployment, an important requirement for community wireless networks. However, this architecture carries the risk that lack of planning might render the network’s performance unusably low. For example, it might be necessary to place nodes carefully to ensure connectivity; the omni-directional antennas might provide uselessly short radio ranges; or the inefficiency of multi-hop forwarding might leave some users effectively disconnected. The paper evaluates this unplanned mesh architecture with a case study of the Roofnet 802.11b mesh network. Roofnet consists of 37 nodes spread over four square kilometers of an urban area. The network provides users with usable performance despite lack of planning: the average inter-node throughput is 627 kbits/second, even though the average route has three hops. The paper evaluates multiple aspects of the architecture: the effect of node density on connectivity and throughput; the characteristics of the links that the routing protocol elects to use; the usefulness of the highly connected mesh afforded by omni-directional antennas for robustness and throughput; and the potential performance of a single-hop network using the same nodes as Roofnet.
On the Minimum Node Degree and Connectivity of a Wireless Multihop Network
- ACM MobiHoc
, 2002
"... This paper investigates two fundamental characteristics of a wireless multihop network: its minimum node degree and its k–connectivity. Both topology attributes depend on the spa-tial distribution of the nodes and their transmission range. Using typical modeling assumptions — a random uniform distri ..."
Abstract
-
Cited by 318 (4 self)
- Add to MetaCart
This paper investigates two fundamental characteristics of a wireless multihop network: its minimum node degree and its k–connectivity. Both topology attributes depend on the spa-tial distribution of the nodes and their transmission range. Using typical modeling assumptions — a random uniform distribution of the nodes and a simple link model — we de-rive an analytical expression that enables the determination of the required range r0 that creates, for a given node den-sity ρ, an almost surely k–connected network. Equivalently, if the maximum r0 of the nodes is given, we can find out how many nodes are needed to cover a certain area with a k–connected network. We also investigate these questions by various simulations and thereby verify our analytical ex-pressions. Finally, the impact of mobility is discussed. The results of this paper are of practical value for re-searchers in this area, e.g., if they set the parameters in a network–level simulation of a mobile ad hoc network or if they design a wireless sensor network. Categories and Subject Descriptors C.2 [Computer-communication networks]: Network architecture and design—wireless communication, network communications, network topology; G.2.2 [Discrete math-ematics]: Graph theory; F.2.2 [Probability and statis-tics]: Stochastic processes
Mobile ad hoc networking: imperatives and challenges
, 2003
"... Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-exi ..."
Abstract
-
Cited by 317 (8 self)
- Add to MetaCart
Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET's characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future.