Results 11  20
of
270
Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions
, 2004
"... In this paper, we develop a robust uncertainty principle for finite signals in C N which states that for nearly all choices T, Ω ⊂ {0,..., N − 1} such that T  + Ω  ≍ (log N) −1/2 · N, there is no signal f supported on T whose discrete Fourier transform ˆ f is supported on Ω. In fact, we can mak ..."
Abstract

Cited by 181 (17 self)
 Add to MetaCart
In this paper, we develop a robust uncertainty principle for finite signals in C N which states that for nearly all choices T, Ω ⊂ {0,..., N − 1} such that T  + Ω  ≍ (log N) −1/2 · N, there is no signal f supported on T whose discrete Fourier transform ˆ f is supported on Ω. In fact, we can make the above uncertainty principle quantitative in the sense that if f is supported on T, then only a small percentage of the energy (less than half, say) of ˆ f is concentrated on Ω. As an application of this robust uncertainty principle (QRUP), we consider the problem of decomposing a signal into a sparse superposition of spikes and complex sinusoids f(s) = � α1(t)δ(s − t) + � α2(ω)e i2πωs/N / √ N. t∈T We show that if a generic signal f has a decomposition (α1, α2) using spike and frequency locations in T and Ω respectively, and obeying ω∈Ω T  + Ω  ≤ Const · (log N) −1/2 · N, then (α1, α2) is the unique sparsest possible decomposition (all other decompositions have more nonzero terms). In addition, if T  + Ω  ≤ Const · (log N) −1 · N, then the sparsest (α1, α2) can be found by solving a convex optimization problem. Underlying our results is a new probabilistic approach which insists on finding the correct uncertainty relation or the optimally sparse solution for nearly all subsets but not necessarily all of them, and allows to considerably sharpen previously known results [9, 10]. In fact, we show that the fraction of sets (T, Ω) for which the above properties do not hold can be upper bounded by quantities like N −α for large values of α. The QRUP (and the application to finding sparse representations) can be extended to general pairs of orthogonal bases Φ1, Φ2 of C N. For nearly all choices Γ1, Γ2 ⊂ {0,..., N − 1} obeying Γ1  + Γ2  ≍ µ(Φ1, Φ2) −2 · (log N) −m, where m ≤ 6, there is no signal f such that Φ1f is supported on Γ1 and Φ2f is supported on Γ2 where µ(Φ1, Φ2) is the mutual coherence between Φ1 and Φ2.
Theoretical results on sparse representations of multiplemeasurement vectors
 IEEE Trans. Signal Process
, 2006
"... Abstract — Multiple measurement vector (MMV) is a relatively new problem in sparse representations. Efficient methods have been proposed. Considering many theoretical results that are available in a simple case – single measure vector (SMV) – the theoretical analysis regarding MMV is lacking. In th ..."
Abstract

Cited by 147 (2 self)
 Add to MetaCart
(Show Context)
Abstract — Multiple measurement vector (MMV) is a relatively new problem in sparse representations. Efficient methods have been proposed. Considering many theoretical results that are available in a simple case – single measure vector (SMV) – the theoretical analysis regarding MMV is lacking. In this paper, some known results of SMV are generalized to MMV. Some of these new results take advantages of additional information in the formulation of MMV. We consider the uniqueness under both an ℓ0norm like criterion and an ℓ1norm like criterion. The consequent equivalence between the ℓ0norm approach and the ℓ1norm approach indicates a computationally efficient way of finding the sparsest representation in an overcomplete dictionary. For greedy algorithms, it is proven that under certain conditions, orthogonal matching pursuit (OMP) can find the sparsest representation of an MMV with computational efficiency, just like in SMV. Simulations show that the predictions made by the proved theorems tend to be very conservative; this is consistent with some recent theoretical advances in probability. The connections will be discussed.
Enhancing Sparsity by Reweighted ℓ1 Minimization
, 2007
"... It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained ℓ1 minimization. In this paper, we study a novel method for sparse signal recovery that in many si ..."
Abstract

Cited by 145 (4 self)
 Add to MetaCart
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained ℓ1 minimization. In this paper, we study a novel method for sparse signal recovery that in many situations outperforms ℓ1 minimization in the sense that substantially fewer measurements are needed for exact recovery. The algorithm consists of solving a sequence of weighted ℓ1minimization problems where the weights used for the next iteration are computed from the value of the current solution. We present a series of experiments demonstrating the remarkable performance and broad applicability of this algorithm in the areas of sparse signal recovery, statistical estimation, error correction and image processing. Interestingly, superior gains are also achieved when our method is applied to recover signals with assumed nearsparsity in overcomplete representations—not by reweighting the ℓ1 norm of the coefficient sequence as is common, but by reweighting the ℓ1 norm of the transformed object. An immediate consequence is the possibility of highly efficient data acquisition protocols by improving on a technique known as compressed sensing.
Compressed Sensing: Theory and Applications
, 2012
"... Compressed sensing is a novel research area, which was introduced in 2006, and since then has already become a key concept in various areas of applied mathematics, computer science, and electrical engineering. It surprisingly predicts that highdimensional signals, which allow a sparse representati ..."
Abstract

Cited by 120 (30 self)
 Add to MetaCart
(Show Context)
Compressed sensing is a novel research area, which was introduced in 2006, and since then has already become a key concept in various areas of applied mathematics, computer science, and electrical engineering. It surprisingly predicts that highdimensional signals, which allow a sparse representation by a suitable basis or, more generally, a frame, can be recovered from what was previously considered highly incomplete linear measurements by using efficient algorithms. This article shall serve as an introduction to and a survey about compressed sensing. Key Words. Dimension reduction. Frames. Greedy algorithms. Illposed inverse problems. `1 minimization. Random matrices. Sparse approximation. Sparse recovery.
Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements
 CISS 2006 (40th Annual Conference on Information Sciences and Systems
, 2006
"... Abstract — This paper proves best known guarantees for exact reconstruction of a sparse signal f from few nonadaptive universal linear measurements. We consider Fourier measurements (random sample of frequencies of f) and random Gaussian measurements. The method for reconstruction that has recently ..."
Abstract

Cited by 108 (7 self)
 Add to MetaCart
(Show Context)
Abstract — This paper proves best known guarantees for exact reconstruction of a sparse signal f from few nonadaptive universal linear measurements. We consider Fourier measurements (random sample of frequencies of f) and random Gaussian measurements. The method for reconstruction that has recently gained momentum in the Sparse Approximation Theory is to relax this highly nonconvex problem to a convex problem, and then solve it as a linear program. What are best guarantees for the reconstruction problem to be equivalent to its convex relaxation is an open question. Recent work shows that the number of measurements k(r, n) needed to exactly reconstruct any rsparse signal f of length n from its linear measurements with convex relaxation is usually O(r polylog(n)). However, known guarantees involve huge constants, in spite of very good performance of the algorithms in practice. In attempt to reconcile theory with practice, we prove the first guarantees for universal measurements (i.e. which work for all sparse functions) with reasonable constants. For Gaussian measurements, k(r, n) � 11.7 r ˆ 1.5 + log(n/r) ˜ , which is optimal up to constants. For Fourier measurements, we prove the best known bound k(r, n) = O(r log(n) · log 2 (r) log(r log n)), which is optimal within the log log n and log 3 r factors. Our arguments are based on the
Just relax: Convex programming methods for subset selection and sparse approximation
, 2004
"... Subset selection and sparse approximation problems request a good approximation of an input signal using a linear combination of elementary signals, yet they stipulate that the approximation may only involve a few of the elementary signals. This class of problems arises throughout electrical enginee ..."
Abstract

Cited by 103 (5 self)
 Add to MetaCart
Subset selection and sparse approximation problems request a good approximation of an input signal using a linear combination of elementary signals, yet they stipulate that the approximation may only involve a few of the elementary signals. This class of problems arises throughout electrical engineering, applied mathematics and statistics, but small theoretical progress has been made over the last fifty years. Subset selection and sparse approximation both admit natural convex relaxations, but the literature contains few results on the behavior of these relaxations for general input signals. This report demonstrates that the solution of the convex program frequently coincides with the solution of the original approximation problem. The proofs depend essentially on geometric properties of the ensemble of elementary signals. The results are powerful because sparse approximation problems are combinatorial, while convex programs can be solved in polynomial time with standard software. Comparable new results for a greedy algorithm, Orthogonal Matching Pursuit, are also stated. This report should have a major practical impact because the theory applies immediately to many realworld signal processing problems.
On the conditioning of random subdictionaries
 Appl. Comput. Harmonic Anal
"... Abstract. An important problem in the theory of sparse approximation is to identify wellconditioned subsets of vectors from a general dictionary. In most cases, current results do not apply unless the number of vectors is smaller than the square root of the ambient dimension, so these bounds are too ..."
Abstract

Cited by 96 (8 self)
 Add to MetaCart
(Show Context)
Abstract. An important problem in the theory of sparse approximation is to identify wellconditioned subsets of vectors from a general dictionary. In most cases, current results do not apply unless the number of vectors is smaller than the square root of the ambient dimension, so these bounds are too weak for many applications. This paper shatters the squareroot bottleneck by focusing on random subdictionaries instead of arbitrary subdictionaries. It provides explicit bounds on the extreme singular values of random subdictionaries that hold with overwhelming probability. The results are phrased in terms of the coherence and spectral norm of the dictionary, which capture information about its global geometry. The proofs rely on standard tools from the area of Banach space probability. As an application, the paper shows that the conditioning of a subdictionary is the major obstacle to the uniqueness of sparse representations and the success of ℓ1 minimization techniques for signal recovery. Indeed, if a fixed subdictionary is well conditioned and its cardinality is slightly smaller than the ambient dimension, then a random signal formed from this subdictionary almost surely has no other representation that is equally sparse. Moreover, with overwhelming probability, the maximally sparse representation can be identified via ℓ1 minimization. Note that the results in this paper are not directly comparable with recent work on subdictionaries of random dictionaries. 1.
Nearoptimal sparse Fourier representations via sampling
 In STOC
, 2002
"... We give an algorithm for nding a Fourier representation R ofBterms for a given discrete signal A of lengthN, such thatkA,Rk 2 2 is within the factor (1 +) of best possible kA,Roptk 2 2. Our algorithm can access A by reading its values on a sample setT [0;N), chosen randomly from a (nonproduct) dist ..."
Abstract

Cited by 95 (24 self)
 Add to MetaCart
(Show Context)
We give an algorithm for nding a Fourier representation R ofBterms for a given discrete signal A of lengthN, such thatkA,Rk 2 2 is within the factor (1 +) of best possible kA,Roptk 2 2. Our algorithm can access A by reading its values on a sample setT [0;N), chosen randomly from a (nonproduct) distribution of our choice, independent of A. That is, we sample nonadaptively. The total time cost of the algorithm is polynomial inB log(N) log(M) = (where M is the ratio of largest to smallest numerical quantity encountered), which implies a similar bound for the number of samples. 1.
Designing Structured Tight Frames via an Alternating Projection Method
, 2003
"... Tight frames, also known as general WelchBoundEquality sequences, generalize orthonormal systems. Numerous applicationsincluding communications, coding and sparse approximationrequire finitedimensional tight frames that possess additional structural properties. This paper proposes an alterna ..."
Abstract

Cited by 87 (10 self)
 Add to MetaCart
Tight frames, also known as general WelchBoundEquality sequences, generalize orthonormal systems. Numerous applicationsincluding communications, coding and sparse approximationrequire finitedimensional tight frames that possess additional structural properties. This paper proposes an alternating projection method that is versatile enough to solve a huge class of inverse eigenvalue problems, which includes the frame design problem. To apply this method, one only needs to solve a matrix nearness problem that arises naturally from the design specifications. Therefore, it is fast and easy to develop versions of the algorithm that target new design problems. Alternating projection will often succeed even if algebraic constructions are unavailable. To demonstrate
Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints
 THE JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
, 2004
"... Regularization of illposed linear inverse problems via ℓ1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an ℓ1 penalized functional is via an iterative softthresholding algorithm. We propose an alternative implem ..."
Abstract

Cited by 79 (11 self)
 Add to MetaCart
(Show Context)
Regularization of illposed linear inverse problems via ℓ1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an ℓ1 penalized functional is via an iterative softthresholding algorithm. We propose an alternative implementation to ℓ1constraints, using a gradient method, with projection on ℓ1balls. The corresponding algorithm uses again iterative softthresholding, now with a variable thresholding parameter. We also propose accelerated versions of this iterative method, using ingredients of the (linear) steepest descent method. We prove convergence in norm for one of these projected gradient methods, without and with acceleration.