Results 1 - 10
of
538
Learning Patterns of Activity Using Real-Time Tracking
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... Our goal is to develop a visual monitoring system that passively observes moving objects in a site and learns patterns of activity from those observations. For extended sites, the system will require multiple cameras. Thus, key elements of the system are motion tracking, camera coordination, activit ..."
Abstract
-
Cited by 898 (10 self)
- Add to MetaCart
Our goal is to develop a visual monitoring system that passively observes moving objects in a site and learns patterns of activity from those observations. For extended sites, the system will require multiple cameras. Thus, key elements of the system are motion tracking, camera coordination, activity classification, and event detection. In this paper, we focus on motion tracking and show how one can use observed motion to learn patterns of activity in a site. Motion
Object Tracking: A Survey
, 2006
"... The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns o ..."
Abstract
-
Cited by 701 (7 self)
- Add to MetaCart
The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Wallflower: Principles and Practice of Background Maintenance
, 1999
"... Background maintenance is a frequent element of video surveillance systems. We develop Wallflower, a three-component system for background maintenance: the pixel-level component performs Wiener filtering to make probabilistic predictions of the expected background; the region-level component fills i ..."
Abstract
-
Cited by 477 (1 self)
- Add to MetaCart
Background maintenance is a frequent element of video surveillance systems. We develop Wallflower, a three-component system for background maintenance: the pixel-level component performs Wiener filtering to make probabilistic predictions of the expected background; the region-level component fills in homogeneous regions of foreground objects; and the frame-level component detects sudden, global changes in the image and swaps in better approximations of the background. We compare our system with 8 other background subtraction algorithms. Wallflower is shown to outperform previous algorithms by handling a greater set of the difficult situations that can occur. Finally, we analyze the experimental results and propose
A survey on visual surveillance of object motion and behaviors
- IEEE Transactions on Systems, Man and Cybernetics
, 2004
"... Abstract—Visual surveillance in dynamic scenes, especially for humans and vehicles, is currently one of the most active research topics in computer vision. It has a wide spectrum of promising applications, including access control in special areas, human identification at a distance, crowd flux stat ..."
Abstract
-
Cited by 439 (6 self)
- Add to MetaCart
(Show Context)
Abstract—Visual surveillance in dynamic scenes, especially for humans and vehicles, is currently one of the most active research topics in computer vision. It has a wide spectrum of promising applications, including access control in special areas, human identification at a distance, crowd flux statistics and congestion analysis, detection of anomalous behaviors, and interactive surveillance using multiple cameras, etc. In general, the processing framework of visual surveillance in dynamic scenes includes the following stages: modeling of environments, detection of motion, classification of moving objects, tracking, understanding and description of behaviors, human identification, and fusion of data from multiple cameras. We review recent developments and general strategies of all these stages. Finally, we analyze possible research directions, e.g., occlusion handling, a combination of twoand three-dimensional tracking, a combination of motion analysis and biometrics, anomaly detection and behavior prediction, content-based retrieval of surveillance videos, behavior understanding and natural language description, fusion of information from multiple sensors, and remote surveillance. Index Terms—Behavior understanding and description, fusion of data from multiple cameras, motion detection, personal identification, tracking, visual surveillance.
Detecting Moving Objects, Ghosts and Shadows in Video Streams
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2003
"... Abstract—Background subtraction methods are widely exploited for moving object detection in videos in many applications, such as traffic monitoring, human motion capture, and video surveillance. How to correctly and efficiently model and update the background model and how to deal with shadows are t ..."
Abstract
-
Cited by 248 (24 self)
- Add to MetaCart
(Show Context)
Abstract—Background subtraction methods are widely exploited for moving object detection in videos in many applications, such as traffic monitoring, human motion capture, and video surveillance. How to correctly and efficiently model and update the background model and how to deal with shadows are two of the most distinguishing and challenging aspects of such approaches. This work proposes a general-purpose method that combines statistical assumptions with the objectlevel knowledge of moving objects, apparent objects (ghosts), and shadows acquired in the processing of the previous frames. Pixels belonging to moving objects, ghosts, and shadows are processed differently in order to supply an object-based selective update. The proposed approach exploits color information for both background subtraction and shadow detection to improve object segmentation and background update. The approach proves fast, flexible, and precise in terms of both pixel accuracy and reactivity to background changes. Index Terms—Background modeling, color segmentation, reactivity to changes, shadow detection, video surveillance, object-level knowledge. 1
Algorithms for Cooperative Multisensor Surveillance
- Surveillance, Proceedings of the IEEE
, 2001
"... This paper presents an overview of the issues and algorithms involved in creating this semiautonomous, multicamera surveillance system ..."
Abstract
-
Cited by 217 (8 self)
- Add to MetaCart
This paper presents an overview of the issues and algorithms involved in creating this semiautonomous, multicamera surveillance system
Human Activity Analysis: A Review
- TO APPEAR. ACM COMPUTING SURVEYS.
"... Human activity recognition is an important area of computer vision research. Its applications include surveillance systems, patient monitoring systems, and a variety of systems that involve interactions between persons and electronic devices such as human-computer interfaces. Most of these applicati ..."
Abstract
-
Cited by 214 (6 self)
- Add to MetaCart
Human activity recognition is an important area of computer vision research. Its applications include surveillance systems, patient monitoring systems, and a variety of systems that involve interactions between persons and electronic devices such as human-computer interfaces. Most of these applications require an automated recognition of high-level activities, composed of multiple simple (or atomic) actions of persons. This paper provides a detailed overview of various state-of-the-art research papers on human activity recognition. We discuss both the methodologies developed for simple human actions and those for high-level activities. An approach-based taxonomy is chosen, comparing the advantages and limitations of each approach. Recognition methodologies for an analysis of simple actions of a single person are first presented in the paper. Space-time volume approaches and sequential approaches that represent and recognize activities directly from input images are discussed. Next, hierarchical recognition methodologies for high-level activities are presented and compared. Statistical approaches, syntactic approaches, and description-based approaches for hierarchical recognition are discussed in the paper. In addition, we further discuss the papers on the recognition of human-object interactions and group activities. Public datasets designed for the evaluation of the recognition methodologies are illustrated in our paper as well, comparing the methodologies’ performances. This review will provide the impetus for future research in more productive areas.
A Framework for Robust Subspace Learning
- International Journal of Computer Vision
, 2003
"... Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multi-linear models. These models have been widely used for the representation of shape, appearance, motion, etc, in computer vision applications. ..."
Abstract
-
Cited by 177 (10 self)
- Add to MetaCart
(Show Context)
Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multi-linear models. These models have been widely used for the representation of shape, appearance, motion, etc, in computer vision applications.
Motion-Based Background Subtraction Using Adaptive Kernel Density Estimation
, 2004
"... Background modeling is an important component of many vision systems. Existing work in the area has mostly addressed scenes that consist of static or quasi-static structures. When the scene exhibits a persistent dynamic behavior in time, such an assumption is violated and detection performance deter ..."
Abstract
-
Cited by 166 (1 self)
- Add to MetaCart
(Show Context)
Background modeling is an important component of many vision systems. Existing work in the area has mostly addressed scenes that consist of static or quasi-static structures. When the scene exhibits a persistent dynamic behavior in time, such an assumption is violated and detection performance deteriorates. In this paper, we propose a new method for the modeling and subtraction of such scenes. Towards the modeling of the dynamic characteristics, optical flow is computed and utilized as a feature in a higher dimensional space. Inherent ambiguities in the computation of features are addressed by using a data-dependent bandwidth for density estimation using kernels. Extensive experiments demonstrate the utility and performance of the proposed approach.
Tracking groups of people
- Computer Vision and Image Understanding
, 2000
"... A computer vision system for tracking multiple people in relatively unconstrained environments is described. Tracking is performed at three levels of abstraction: regions, people and groups. A novel, adaptive background subtraction method that combines color and gradient information is used to cope ..."
Abstract
-
Cited by 160 (7 self)
- Add to MetaCart
(Show Context)
A computer vision system for tracking multiple people in relatively unconstrained environments is described. Tracking is performed at three levels of abstraction: regions, people and groups. A novel, adaptive background subtraction method that combines color and gradient information is used to cope with shadows and unreliable color cues. People are tracked through mutual occlusions as they form groups and separate from one another. Strong use is made of color information to disambiguate occlusions and to provide qualitative estimates of depth ordering and position during occlusion. Simple interactions with objects can also be detected. The system is tested using both indoor and outdoor sequences. It is robust and should provide a useful mechanism for bootstrapping and reinitialization of tracking using more specific but less robust human models. Key Words: background subtraction, groups of people, human activity, tracking 1.